cho: a,b,c thuộc R+. Thỏa mãn ab+bc+ac\(\ge1\)
CMR: \(\frac{1}{\sqrt{a^2+ab+b^2}}+\frac{1}{\sqrt{b^2+bc+c^2}}+\frac{1}{\sqrt{c^2+ac+a^2}}\ge\frac{9}{\left(a+b+c\right)^2}\)
To Kudo :
Cho a,b,c là 3 số dương thỏa mãn : \(a+b+c=\frac{1}{2}\) . CMR:
\(\frac{\frac{1}{2}c+ab}{a+b}+\frac{\frac{1}{2}a+bc}{b+c}+\frac{\frac{1}{2}b+ac}{a+c}\ge1\)
P/s: ko làm đc bảo a để a post lời giải lên cho :) Nhưg a nghĩ e sẽ làm đc !
Cho a, b, c là các số thực thỏa mãn ab+bc+ca=3. CMR:
(a2+2)(b2+2)(c2+2)-18 ≥ 3(a2+b2+c2)
1,cho a,b,c>0 . CMR: \(\frac{b}{a+3b}+\frac{c}{b+3c}+\frac{a}{c+3a}\le\frac{3}{4}\)
2,CHo a,b,c>0 thỏa mãn a+b+c <= ab+bc+ca
CMR: \(\frac{1}{1+a+b}+\frac{1}{1+b+c}+\frac{1}{1+c+a}\le1\)
3, Cho a,b,c>0 thoaor mãn a+b+c=3
CMR: \(\frac{1}{2ab^2+1}+\frac{1}{2bc^2+1}+\frac{1}{2ca^2+1}\ge1\)
Dùng bđt bunhiacopxki nha
cho a,b,c là các số dương thỏa mãn : \(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=2\)
chứng minh rằng \(\frac{a}{1+\frac{b}{a}}+\frac{b}{1+\frac{c}{b}}+\frac{c}{1+\frac{a}{c}}\ge1\)
cho a,b,c là các số thực thỏa mãn :\(a\ge1,b\ge1,c\ge1\)
chứng minh :
\(\frac{1}{2a-1}+\frac{1}{2b-1}+\frac{1}{2c-1}+\frac{4ab}{1+ab}+\frac{4bc}{1+bc}+\frac{4ca}{1+ca}\ge9\)
Bài 111
Cho a,b,c là các số thực không âm thỏa mãn \(a+b+c=2\)
CMR: \(\frac{bc}{a^2+1}+\frac{ca}{b^2+1}+\frac{ab}{c^2+1}\le1\)
cho 3 số thực dương không âm thỏa mãn a+b+c=1
tìm MAX của
Cho a,b,c >0 thỏa mãn a+b+c=1. CMR:
\(P=\sqrt{\frac{bc}{a+bc}}+\sqrt{\frac{ac}{b+ac}}+\sqrt{\frac{ab}{c+ab}}\le\frac{3}{2}\)