Ta có:
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{c+a+b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Do đó: \(\frac{a+b}{c}=2\text{⇔}a+b=2c\)
\(\frac{b+c}{a}=2\text{⇔}b+c=2a\)
\(\frac{c+a}{b}=2\text{⇔}c+a=2b\)
Theo bài ra, ta có: \(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
\(=\frac{a+b}{b}.\frac{b+c}{c}.\frac{c+a}{a}\) \(=\frac{2c}{b}.\frac{2a}{c}.\frac{2b}{a}=2.2.2=8\)
Vậy A = 8