Bài 2: Nhân đa thức với đa thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Văn Kiệt Nguyễn

CMR a=b=c nếu có một trong các điều kiện sau

a)a^2+b^2+c^2=ab+bc+ca

b)(a+b+c)^2=3(a^2+b^2+c^2)

c)(a+b+c)^2=3(ab+bc+ca)

giải CHI TIẾT nha

Nguyễn Tấn Dũng
5 tháng 6 2017 lúc 10:36

a) Ta có:

\(a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow\) \(2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)

\(\Leftrightarrow\) \(2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)

\(\Leftrightarrow\) \(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)

\(\Leftrightarrow\) \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\) (1)

Ta có: (a-b)2 \(\geq\) 0; (b-c)2 \(\geq\) 0; (a-c)2 \(\geq\) 0 (2)

(1)(2) \(\Rightarrow\) \(\begin{cases} (a-b)^{2}=0\\ (b-c)^{2}=0\\ (a-c)^{2}=0 \end{cases} \) \(\Leftrightarrow\) \(\begin{cases} a-b=0\\ b-c=0\\ a-c=0 \end{cases} \) \(\Leftrightarrow\) \(\begin{cases} a=b\\ b=c\\ a=c \end{cases} \) \(\Leftrightarrow\) a=b=c

b) Ta có: \(\left(a+b+c\right)^2=3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow\) \(a^2+b^2+c^2+2ab+2ac+2bc=3a^2+3b^2+3c^2\)

\(\Leftrightarrow\) \(3a^2+3b^2+3c^2-a^2-b^2-c^2-2ac-2bc-2ab=0\)

\(\Leftrightarrow\) \(2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)

\(\Leftrightarrow\) \(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)

\(\Leftrightarrow\) \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

Ta có: (a-b)2 \(\geq\) 0; (b-c)2 \(\geq\) 0; (a-c)2 \(\geq\) 0 (2)

(1)(2) \(\Rightarrow\) \(\begin{cases} (a-b)^{2}=0\\ (b-c)^{2}=0\\ (a-c)^{2}=0 \end{cases} \) \(\Leftrightarrow\) \(\begin{cases} a-b=0\\ b-c=0\\ a-c=0 \end{cases} \) \(\Leftrightarrow\) \(\begin{cases} a=b\\ b=c\\ a=c \end{cases} \) \(\Leftrightarrow\) a=b=c

c. Ta có: \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\)

\(\Leftrightarrow\) \(a^2+b^2+c^2+2ab+2ac+2bc=3ab+3bc+3ac\)

\(\Leftrightarrow\) \(a^2+b^2+c^2+2ab+2bc+2ac-3ab-3bc-3ac=0\)

\(\Leftrightarrow\) \(a^2+b^2+c^2-ab-bc-ac=0\)

\(\Leftrightarrow\) \(2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Leftrightarrow\) \(\left(a^2-2bc+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)

\(\Leftrightarrow\) \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

Ta có: (a-b)2 \(\geq\) 0; (b-c)2 \(\geq\) 0; (a-c)2 \(\geq\) 0 (2)

(1)(2) \(\Rightarrow\) \(\begin{cases} (a-b)^{2}=0\\ (b-c)^{2}=0\\ (a-c)^{2}=0 \end{cases} \) \(\Leftrightarrow\) \(\begin{cases} a-b=0\\ b-c=0\\ a-c=0 \end{cases} \) \(\Leftrightarrow\) \(\begin{cases} a=b\\ b=c\\ a=c \end{cases} \) \(\Leftrightarrow\) a=b=c

Chúc bạn học tốt haha

Nguyễn Huy Tú
5 tháng 6 2017 lúc 9:59

Học tại nhà - Toán - Bài 7: CMR: a = b = c nếu có 1 trong các điều kiện sau:1/ a2 + b2 + c2 = ab + bc + ca.2/ (a + b + c)2 = 3(a2 + b2 + c2)3/ (a + b + c)2 = 3 (ab + bc + ca).


Các câu hỏi tương tự
khanhhuyen6a5
Xem chi tiết
duong thi thanh thuy
Xem chi tiết
Nohara Shinnosuke
Xem chi tiết
tràn thị trúc oanh
Xem chi tiết
Dương Thị Yến Nhi
Xem chi tiết
Văn Thắng Hồ
Xem chi tiết
Nguyễn Trọng Phúc
Xem chi tiết
khanhhuyen6a5
Xem chi tiết
Nguyễn Như Quỳnh
Xem chi tiết