thay \(a^2=b.c\)vào biểu thức, ta có:
\(\frac{b.c+c^2}{b^2+b.c}=\frac{c.\left(c+b\right)}{b.\left(b+c\right)}=\frac{c}{b}\)
thay \(a^2=b.c\)vào biểu thức, ta có:
\(\frac{b.c+c^2}{b^2+b.c}=\frac{c.\left(c+b\right)}{b.\left(b+c\right)}=\frac{c}{b}\)
các bạn giải gấp giúp mình 2 bài này nha :)
1) tìm a1 , a2, a3,... a9 , biết:
\(\frac{a1-1}{9}=\frac{a2-2}{8}=\frac{a3-3}{7}=...=\frac{a9-9}{1}\)( a1, a2 ko phải a nhân 1 hay a nhân 2)
và a1 + a2 + a3 + ... + a9 = 90
2) biết \(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}=4\) ; a'+ b'+ c' khác 0; a'-3b'+2c' khác 0 . Tính;
a) \(\frac{a+b+c}{a'+b'+c'}\)
b)\(\frac{a-3b+2c}{a'-3b'+2c'}\)
a, Cho :\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\) và a,b,c khác 0 và a+b+c khác 0 . So sánh a, b, c .
b, Cho : \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\)và x,y,z khác 0 ; x + y + z khác 0 . Tính \(\frac{x^{333}.y^{666}}{z^{999}}\)
c, Cho : ac = b2 ; ab = c2 ( a+b+c khác 0 ) . Tính \(\frac{b^{333}}{c^{111}.a^{222}}\)
biết\(a^2+ab+\frac{b^2}{3}=25;c^2+ac+\frac{b^2}{3}=9;a^2+ac+c^2=16\) và a khác 0; c khác 0;a khác -c
CMR: \(\frac{2c}{a}=\frac{b+c}{a+c}\)
1.Cho bốn số a ,b ,c ,d khác 0 và thỏa mãn : b2 = ac ; c2 = bd ; b3 + c3 + d3 khác 0
Chứng minh rằng: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)= \(\frac{a}{d}\)
2. Tìm các số a1 ,a2 ,a3 ,... ,a9 biết
\(\frac{a_1-1}{9}\)= \(\frac{a_2-2}{8}\)= \(\frac{a_3-3}{7}\)= ... = \(\frac{a_9-9}{1}\) và a1 + a2 + a3 +... + a9 = 90
Cho \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\text{với a,b,c,d khác 0;c khác +_d . C/M }\)\(\frac{a}{b}=\frac{c}{d}hoặc\frac{a}{b}=\frac{d}{c}\)
Cho a;b;c;x;y;z khác 0. T/m: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\) . C/m: \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}=\frac{\left(a+b+c\right)^2}{x+y+z}\)
cho \(\frac{a}{b}=\frac{c}{d}\) .CM \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2-b^2}{c^2-d^2}\) (b,c,d khác 0,c+d khác 0, c-d khác 0)
Bài 1
Cho \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\left(b\ne0\right)\)
Chững minh c=0
Bài 2
Cho tỉ lệ thức \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)
Chững minh a + b+ c+ d = 0
Bài 3
Cho \(\frac{cx-az}{b}=\frac{ay-bx}{c}=\frac{bz-cy}{a}\)
Chững mình rằng \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Bài 4
Cho a + b = c + d và \(a^2+b^2+c^2=c^2+d^2\left(a,b,c,d\ne0\right)\)
Chững minh rằng 4 số a,b, c, d lập thành 1 tỉ lệ thức
Bài 5
Cho \(\left(x1P-y1Q\right)^{2n}+\left(x2P+y2Q\right)^{2m}+...+\left(xkP-ykQ\right)^{2k}\le0\left(n,m,...,k\inℕ^∗;P,Q\ne0\right)\)
Chứng minh rằng \(\frac{x1+x2+x3+...+xk}{y1+y2+y3+...+yk}\)
Bài 6
Biết rằng \(\hept{\begin{cases}a1^2+a2^2+a3^2=P^2\\b1^2+b2^2+b3^2=Q^2\end{cases}}\) và \(a1\cdot b1+a2\cdot b2+a3\cdot b3=P\cdot Q\)
Chứng minh \(\frac{a1}{b1}=\frac{a2}{b2}=\frac{a3}{b3}=\frac{P}{Q}\)
Bài 7
Cho 4 số a, b, c, d khác 0 thảo mãn \(\left(ad+bc\right)^2=4abcd\)
Chững minh rằng 4 số a, b, c ,d có thê rlaapj thành 1 tỉ lệ thức
Bài 8
Cho các số a, b, c thảo mãn \(\frac{a}{2010}=\frac{b}{2011}=\frac{c}{2012}\)
a. Tính \(M=\frac{2a-3b+c}{2c-3b}\)
b. Chứng minh rằng \(a\cdot\left(a-b\right)\cdot\left(b-c\right)=\left(a-c\right)^2\)
Cho \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)với a,b,c,d khác 0 ; c khác +d và -d . chứng minh rằng hoặc a/b = c/d hoặc a/b = d/c