cho 3 số a,b,c khác 0 thỏa mãn \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
tính C=\(\frac{\left(ab+bc+ca\right)^{2011}}{a^{2022}+b^{2022}+c^{2022}}\)
Cho 3 số a,b,c khác 0 thỏa mãn \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
Tính \(P=\frac{\left(ab+bc+ca\right)^{1008}}{a^{2016}+b^{2016}+c^{2016}}\)
Cho a,b,c khác 0 thỏa mãn: \(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\)
Tính: M=\(\frac{ab+bc+ca}{a^2+b^2+c^2}\)
Cho 3 số a,b,c khác 0 thỏa mãn \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
Tính giá trị biểu thức M=\(\frac{ab+bc+ca}{a^2+b^2+c^2}\)
Cho ba số a, b, c khác 0 thỏa mãn \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}.\)
Tính giá trị của biểu thức \(M=\frac{ab+bc+ca}{a^2+b^2+c^2}.\)
Cho a, b, c là ba số khác 0 thỏa mãn: \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)(các giả thiết đều có nghĩa)
Tính giá trị của biểu thức:
\(M=\frac{ab+bc+ca}{a^2+b^2+c^2}\Leftrightarrow\frac{abc}{ac+bc}=\frac{abc}{ab+ac}=\frac{abc}{bc+ab}\)
Cho a ;b ; c khác 0 thỏa mãn:
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
Tính giá trị biểu thức:
\(M=\frac{ab+bc+ca}{a^2+b^2+c^2}\)
Cho a,b,c là các số khác 0 thỏa mãn điều kiện
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
Tìm giá trị của biểu thức \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3\)
Cho các số a;b;c khác 0 thỏa mãn \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
Tính giá tri biểu thức \(P=\frac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}\)