a+b+c = 0 =>a+b=-c ; b+c=-a ; c+a=-b
=> (a+b).(b+c).(c+a)/abc = (-c).(-a).(-b)/abc = -abc/abc = -1
k mk nha
Ta có : a + b + c = 0
=> a + b = -c
=> b + c = -a
=> c + a = -b
Vậy \(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{\left(-c\right)\left(-a\right)\left(-b\right)}{abc}=\frac{-abc}{abc}=-1\)
Ta có: a+b+c=0
=> a + b = -c
b + c = -a
c + a = -b
\(\Rightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{\left(-c\right)\left(-a\right)\left(-b\right)}{abc}=-\frac{abc}{abc}=-1\)
Vậy \(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=1\)