a: Xét ΔHAB vuông tại H có \(\widehat{ABH}=45^0\)
nên ΔHAB vuông cân tại H
b: \(AB=\sqrt{AH^2+HB^2}=AH\sqrt{2}\)
a: Xét ΔHAB vuông tại H có \(\widehat{ABH}=45^0\)
nên ΔHAB vuông cân tại H
b: \(AB=\sqrt{AH^2+HB^2}=AH\sqrt{2}\)
Cho \(\Delta ABC\) , \(\widehat{B}-\widehat{C}\) = 900. Kẻ \(BD\perp AB\left(D\in AC\right),AH\perp BC\) tại H.
a) CMR: \(\widehat{HAB}=\widehat{ACB}=\widehat{DBC}\)
b) So sánh \(\widehat{ABH}=\widehat{CAH}\)
Cho \(\Delta ABC\left(AB>AC\right)\) , M là trung điểm của BC . Đường thẳng đi qua M và vuông góc với tia phân giác của góc A tại H cắt 2 tia AB và AC lần lượt tại E và F . CMR : a) \(\dfrac{EF^2}{4}+AH^2=AE^2\)
b)\(2\widehat{BME}=\widehat{ACB}-\widehat{B}\)
c) \(BE=CF\)
d) \(AE=\dfrac{AB+AC}{2}\)
Cho \(\Delta ABC\) vuông tại A . Kẻ AH vuông góc với BC ( \(H\in BC\) ) . Tia phân giác của các góc \(\widehat{HAC}\) và \(\widehat{HAB}\) lần lượt cắt BC ở D , E . Tính độ dài đoạn thẳng DE biết AB = 5cm ; AC = 12cm
Cho △ABC có \(\widehat{B}\) > 90o. Vẽ đuòng phân giác AD và đường cao AH của tam giác ABC.
a) CMR: \(2.\widehat{HAD}\) = \(\widehat{HAB}+\widehat{HAC}\)
b) CMR: \(\widehat{ABC}=90^o+\widehat{HAB}\) và \(\widehat{ACB}=90^o-\widehat{HAC}\)
c) CMR: \(\widehat{DAH}=\dfrac{1}{2}\left(\widehat{ABC}-\widehat{ACB}\right)\)
GIÚP MÌNH CÂU C VỚI CÂU A VÀ B MÌNH LÀM ĐC RỒI
Cho tam giác ABC cân tại A, gọi M là trung điểm của BC, kẻ \(MH\perp AB\left(H\in AB\right)\). Trên tia đối ủa MH lấy K sao cho MH=MK.
a, CMR: \(CK\perp MH\)
b,Trên AH lấy E , trên AC lấy F sao cho \(\widehat{AEF}=2.\widehat{HME}.CMR:\widehat{EFM}=\widehat{MFC}\)
c, Gọi O là giao điểm ủa ba đường phân giác trong của tam giác ABC, đặt BC=a, OA=a', Ob=b'. CMR a+a'>b+b' nếu a>b
Cho tam giác ABC vuông tại A, BC=7cm. Từ A kẻ AH vuôn góc BC (H thuộc BC).
a, tính AB và AC
b, tính chu vi của tam giác ABC
c, cmr: HB=HC
d,tính AH
1.Cho \(\Delta ABC\) vuông tại A có đường p/giác \(\widehat{ABC}\) cắt AC tại E kẻ \(EH\perp BC\) tại H\(\left(H\in BC\right)\)
C/m: a)\(\Delta ABE=\Delta HBE\)
b)BE là trung trực AH
c)EC > AE
2.Cho \(\Delta ABC\) vuông tại A đường cao AH. Trên cạnh BC lấy D sao cho BD=BA
a)C/m:\(\widehat{BAD}=\widehat{BDA}\)
b)C/m:\(\widehat{HAD}+\widehat{BDA}=\widehat{DAC}+\widehat{DAB}\)
Từ đó suy ra: AD là tia p/giác \(\widehat{HAC}\)
c)Vẽ \(DK\perp AC\) .C/m:AK=AH
d)C/m:AB+AC < BC+AH
3.Cho \(\Delta ABC\) vuông tại A đường cao AH . Biết AH=4 cm; HB=2 cm; HC=8 cm
a)Tính AB; AC
b)C/m:\(\widehat{B}>\widehat{C}\)
Cho ΔABC vuông ở A, có \(\widehat{C}=30^0\), AH⊥BC (H∈BC). Trên đoạn HC lấy điểm D sao cho HD=HB. Từ C kẻ CE⊥AD. CMR:
a) ΔABD là tam giác đều
b) AH=CE
c) EH//AC
Cho ΔABC vuông tại A có AB =3cm AC =4cm, kẻ đường cao AH (H ∈ BC)
a) Tính BC.
b) So sánh \(\widehat{B}\) và \(\widehat{C}\); HB và HC.
Help me câu b).