Cho tam giác ABC có 3 góc nhọn và AB = AC.
Gọi M là trung điểm của đoạn thẳng BC.
a) Chứng minh : Tam giác ABM = tam giác ACM.
b) Trên tia đối MA lấy điểm E sao cho MA = ME. Chứng minh AC // BE.
c) Kẻ BH vuông góc với AC tại H, kẻ CK vuông góc với BE tại K.
Chứng minh : Góc ABH = góc ECK.
d) Chứng minh : M là trung điểm của đoạn thẳng HK.
Cho tam giác ABC có ba góc nhọn có AB = AC . Gọi M là trung điểm của cạnh BC . Trên tia đối của tia MA lấy điểm E sao cho MA = ME , từ B kẻ BH vuông góc AC tại H , từ C kẻ CK vuông góc BE tại K . CMR : a) góc ABH = góc ECK d) MH = MK
1. Cho tia Ot là tia phân giác của góc xOy nhọn. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Oy lấy điểm H sao cho OH > OA
a) Chứng minh: Tam giác OAH = tam giác OBH
b) Tia AH cắt Oy tại M, tia BH catứ tia Ox tại N. Chứng minh tam giác OAM = tam giác OBN
c) Chứng minh AB vuông góc với OH
d) Gọi K là trung điểm của MN. Chứng minh: K thuộc tia Ot
2. Cho góc nhọn xAy. Trên tia Ax lấy B. Trên tia Ay lấy C sao cho AB - AC. Kẻ BH vuông góc AC (H thuộc AC) và CK vuông góc AB (K thuộc AB)
a) Chứng minh góc ABH = góc ACK
b) BH cắt CK tại E. Chứng minh AE vuông góc BC
c) Tam giác ABC phải thoả mãn điều kiện gì để E là điểm cách đều 3 cạnh ?
3. Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA
a) Chứng minh: Tam giác AMB = tam giác DMC
b) Chứng minh: AC = BD và AC //BD
c) Chứng minh: Tam giác ABC = tam giác DCB. Tính số đo góc BDC
4. Cho tam giác ABC vuông tại A có góc ABC = 60 độ
a) Tính số đo góc ACB
b) Trên tia đối của tia AC lấy điểm D sao cho AD = AC. Chứng minh tam giác ABD = tam giác ABC
c) Vẽ tia Bx là tia phân giác của góc ABC. Qua C vẽ đường thẳng vuông góc với AC, cắt tia Bx tại E. Chứng minh AC = 1/2 BE
Cho tam giác ABC có AB<AC, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MA=MD
a) Chứng minh tam giác ABM = tam giác DCM
b) Chứng minh AB//CD
c) Từ B kẻ BE vuông góc với AD tại E. Từ C kẻ CK vuông góc với AD tại K. Chứng minh BE=CK
Cho tam giác ABC nhọn(AB<AC).Gọi M là trung điểm của cạnh BC.Trên tia đối của tia MA lấy D sao cho MA=MD.a)Chứng minh tam giác ABM=tam giác DCM và AB//CD b.Kẻ BH vuông góc với AM tại H,CK vuông góc với DM tại K.Chứng minh:BH//CK VÀ BH=CK
Cho tam giác ABC Gọi M là trung điểm của BC Trên tia đối của tia MA lấy điểm E sao cho : AM = ME Chứng minh :
a, AB = CE
b, AC vuông góc với BE
c, Góc BAC = Góc BEC
d, trên BE và CA lần lượt lấy các điểm H và K sao cho BH = CK
Chứng minh 3 điểm H, M, K thẳng hàng
Cho tamm giác ABC vuông tại A. Trên BC lấy D sao cho AB=BD. Gọi H là trung điểm đoạn thằng AD
a) Chứng minh: ∆ABH = ∆DBH.
b) Chứng minh: BH vuông góc với AD.
c) Kẻ HK vuông góc với AC tại K, gọi E là giao điểm của hai đường thẳng HK và BD, kẻ EF vuông góc với BH tại F. Chứng minh: F là trung điểm của BH.
1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.
a. Chứng minh: ∆BAD = ∆BED
b. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DE
c. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC
2.
Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D.
a. Chứng minh ∆ABD = Đồng ý∆EBD và DE ⊥ BC
b. Gọi K là giao điểm của tia ED và tia BA. Chứng minh AK = EC.
c. Gọi M là trung điểm của KC. Chứng minh ba điểm B, D, M thẳng hàng.
3.
Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm M sao cho BA = BM. Gọi E là trung điểm AM.
a.Chứng minh: ∆ABE = ∆MBE.
b. Gọi K là giao điểm BE và AC. Chứng minh: KM ⊥ BC,
c. Qua M vẽ đường thẳng song song với AC cắt BK tại F. Trên đoạn thẳng KC lấy điểm Q sao cho KQ = MF. Chứng minh: góc ABK = QMC
4
Cho tam giác ABC có AB = AC, lấy M là trung điểm của BC.
a) Chứng minh ∆ABM = ∆ACM
b) Kẻ ME ⊥ AB tại Em kẻ MF ⊥ AC tại F. Chứng minh AE = AF.
c) Gọi K là trung điểm của EF. Chứng minh ba điểm A, K, M thẳng hàng
d) Từ C kẻ đương thẳng song song với AM cắt tia BA tại D. Chứng minh A là trung điểm của BD.
Cho tam giác ABC vuông tại A có AB<AC, gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho MA = MD
a) Chứng minh tam giac ABM = tam giác DCM. Từ đó suy ra AB//CD
b)Trên tia đối của tian CD lấy điểm E sao cho CA = Ce, gọi I là trung điểm của AE. Chứng minh góc CAI = góc CEI và tính số đo góc CAE
c) Kẻ AH vuông góc với BC (H thuộc BC). Qua E kẻ đường thẳng song song với AC, đường thẳng này cắt đường thẳng AH tại F. Chứng minh: AF=BC