Cho tam giác ABC có AC lớn hơn AB nội tiếp đường tròn O bán kính R . Đường phân giác trong và ngoài góc A cắt BC ở D và E sao cho AD = AE . Tính AB^2 + AC^2 theo R
Cho \(\Delta ABC\left(AC< AB\right)\)nội tiếp đường tròn (O;R). Đường phân giác của góc trong và góc ngoài tại A cắt đường thẳng BC theo thứ tự tại D, E sao cho \(AD=AE\). Tính \(AB^2+AC^2\)theo R.
B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.
a) Chứng minh tứ giác AEHF là hình chữ nhật
b) Chứng minh tứ giác BEFC nội tiếp
c) Gọi I là trung điểm của B
C.Chứng minh AI vuông góc với EF
d) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEF
C.Tính diện tích hình tròn tâm K.
B2: Cho ABC nhọn, đường tròn (O) đường kính BC cắt AB, AC lần lượt tại E và D, CE cắt BD tại H
a) Chứng minh tứ giác ADHE nội tiếp
b) AH cắt BC tại F. chứng minh FA là tia phân giác của góc DFE
c) EF cắt đường tròn tại K ( K khác E). chứng minh DK// AF
d) Cho biết góc BCD = 450 , BC = 4 cm. Tính diện tích tam giác ABC
B 3: cho đường tròn ( O) và điểm A ở ngoài (O)sao cho OA = 3R. vẽ các tiếp tuyến AB, AC với đường tròn (O) ( B và C là hai tiếp tuyến )
a) Chứng minh tứ giác OBAC nội tiếp
b) Qua B kẻ đường thẳng song song với AC cắt ( O) tại D ( khác B). đường thẳng AD cắt ( O) tại E. chứng minh AB2= AE. AD
c) Chứng minh tia đối của tia EC là tia phân giác của góc BEA
d) Tính diện tích tam giác BDC theo R
B4: Cho tam giác ABC nhọn, AB >AC, nội tiếp (O,R), hai đường cao AH, CF cắt nhau tại H
a) Chứng minh tứ giác BDHF nội tiếp? Xác định tâm của đường tròn ngoại tiếp tứ giác đó
b) Tia BH cắt AC tại E. chứng minh HE.HB= HF.HC
c) Vẽ đường kính AK của (O). chứng minh AK vuông góc với EF
d) Trường hợp góc KBC= 450, BC = R. tính diện tích tam giác AHK theo R
B5: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Ba đương cao AE, BF, CK cắt nhau tại H. Tia AE, BF cắt đường tròn tâm O lần lượt tại I và J.
a) Chứng minh tứ giác AKHF nội tiếp đường tròn.
b) Chứng minh hai cung CI và CJ bằng nhau.
c) Chứng minh hai tam giác AFK và ABC đồng dạng với nhau
B6: Cho tam giác ABC nhọn nội tiếp đường tròn ( O; R ),các đường cao BE, CF .
a)Chứng minh tứ giác BFEC nội tiếp.
b)Chứng minh OA vuông góc với EF.
cho tam giác ABC nội tiếp đuờng tròn tâm O và đường phân giác trong AD (D thuộc BC, AC<AB). Gọi E và F thứ tự là tâm đường tròn ngoại tiếp tam giác ABD, ACD. a, CMR OE=OF; b, Đặt BC=a. TÍnh S AEOFtheo a,R
Cho tam giác ABC nhọn (AB < AC) . Đường tròn (O;R) đường kính BC cắt AB, AC lần lượt tại E, F. Gọi H là giao điểm của BF và CE; AH cắt BC tại D. I a) Chứng minh: tứ giác AEHF nội tiếp và AD L BC. b) Chứng minh: tứ giác BEHD nội tiếp c) Chứng minh: tứ giác AEDC nội tiếp d) Chứng minh: DA là tia phân giác của góc EDF. f) Chứng minh: AE.AB=AH.AD=AF k) Chứng minh: DA.DH=DB.DC
Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn (O,R), (AB<AC). Ba đường cao AE,BF,CK của tam giác ABC cắt nhau tại H. Vẽ đường kính AD của đường tròn (O,R)
a) Chứng minh: Tứ giác AKHF nội tiếp
b) Chứng minh DC//BF
c) Chứng minh: AB.AC=AE.AD
d) Cho BC=\(\frac{4\sqrt{2}R}{3}\). Tính theo R diện tích hình tròn ngoại tiếp tam giác HKF
Cho tam giác ABC nhọn (AB < AC) vẽ đường tròn tâm O có đường kính BC cắt hai cạnh AB và AC theo thứ tự tại E và F ,gọi H là giao điểm của BE và CF, AH cắt BC tại D. Gọi I là trung điểm AH
a. Chứng minh tứ giác AEHF nội tiếp đường tròn tâm I và AD vuông góc BC
b. Chứng minh tứ giác OEIF nội tiếp và 5 điểm O, D, E, I, F cùng thuộc một đường tròn
C. cho biết BC = 6 cm và góc A = 60 độ Tính độ dài OI
BÀI 1:cho tam giác ABC (AB<AC; góc BAC>90). gọi I,K theo thứ tự là trung điểm AB,AC. hai đường tròn (I),(K) đường kính AB,AC cắt nhau tại điểm thứ hai D. tia BA cắt đường tròn (K) tại điểm thứ hai E, tia CA cắt đường tròn (i) tại điểm thứ hai F. chứng minh: a, ba điểm B,C,D thẳng hàng. b, tứ giác BFEC nội tiếp c, AD,BF,CE đồng qui d, tia DA là phân giác góc EDC
BÀI 2: Từ điểm M nằm ngoài đường tròn(0;R) vẽ 2 tiếp tuyến MA,MB và cát tuyến MCD. gọi I là trung điểm CD, gọi E,F,K lần lượt là giao điểm của đường thẳng AB với MO, MD, OI. chứng minh: a, R= OE.OM= OI.OK B, chứng minh M,A,B,O,I nằm trên một đường tròn
Cho tam giác ABC nhọn (AB<AC), kẻ phân giác AD của góc BAC và đường trung tuyến AM (M,D thuộc BC). Vẽ 2 đường tròn ngoại tiếp các tam giác ABC và ADM, 2 đường tròn này cắt nhau tại điểm thứ 2 là I, đường tròn ngoại tiếp tam giác ADM cắt 2 cạnh AB và AC theo thứ tự tại E và F. Tia AD cắt đường tròn ngoại tiếp tam giác ABC tại J.
a, Chứng minh 3 điểm I; M; J thẳng hàng.
b, Gọi K là trung điểm È, tia MK cắt AC và tia BA theo thứ tự tại P và Q. Chứng minh tam giác PAQ cân