Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng Ngọc Minh Nhâtt

Cho ∆ ABC có AB = AC, kẻ BD vuông góc với AC, CE vuông góc với AB ( D thuộc AC , E thuộc AB ) . Gọi O là giao điểm của BD và CE. Chứng minh : a) ∆ADB = ∆AEC; b) OE = OD; c) AO là tia phân giác của góc BAC.

sao ko ai giúp z:((((

TRẦN BẢO KHÁNH
14 tháng 12 2021 lúc 17:54

(Bạn tự vẽ hình nha!)

a) Xét tam giác ABD vuông tại D và tam giác ACE vuông tại E có:

          AB=AC (gt)

          A là góc chung

Do đó, ............... (ch-gn)

=> BD=CE (2 cạnh tương ứng)

b) Vì AB=AC nên tam giác ABC là tam giác cân tại A => B=C => B1 + B2 = C1 + C2

Mà B1 = C1 (vì tam giác ABD= tam giác ACE) nên B2= C2

Xét tam giác BEC vuông tại E và tam giác CDB vuông tại D có:

          BD=CE (cmt)

          B2= C2 (cmt)

Do đó,.......... (ch-gn)

=> BE=DC (2 cạnh tương ứng)

Xét tam giác OBE vuông tại E và tam giác OCD vuông tại D có:

         BE= DC (cmt)

         B1 = C1 (cmt)

Do đó tam giác OBE= tam giác OCD (cgv-gnk)

c) Ta có: AB=AC (gt) => AE+EB= AD+DC

Mà BE=DC (cmt) nên AE=AD

Xét tam giác ADO và tam giác AEO có:

          EO=OD ( vì tam giác OBE= tam giác OCD)

          AE=AD (cmt)

          AO là cạnh chung

Do đó,.................(c.c.c)

=> A1= A2 ( 2 góc tương ứng)

=> AO là tia phân giác góc A

Vậy AO là tia phân giác góc BAC.


Các câu hỏi tương tự
Hoàng Ngọc Minh Nhâtt
Xem chi tiết
Hoàng Ngọc Minh Nhâtt
Xem chi tiết
Nguyễn Ngọc Thiện
Xem chi tiết
ngdinhthaihoang123
Xem chi tiết
Nguyễn thanh thành
Xem chi tiết
Nguyễn Nga Quỳnh
Xem chi tiết
Mon an
Xem chi tiết
Lê Hoàng Mỹ Duyên
Xem chi tiết
Nguyễn Châu Anh
Xem chi tiết