\(P=a+ab+2abc=a+\frac{1}{2}a.4b\left(\frac{1}{2}+c\right)\le a+\frac{1}{2}a.\left(b+\frac{1}{2}+c\right)^2\)
\(P\le a+\frac{1}{2}a\left(3-a+\frac{1}{2}\right)^2=a+\frac{1}{2}a\left(\frac{7}{2}-a\right)^2\)
\(P\le\frac{1}{2}a^3-\frac{7}{2}a^2+\frac{57}{8}a\)
\(P\le\frac{1}{8}\left(4a^3-28a^2+57a-36\right)+\frac{9}{2}\)
\(P\le\frac{1}{8}\left(2a-3\right)^2\left(a-4\right)+\frac{9}{2}\)
Do \(a+b+c=3\Rightarrow a< 3\Rightarrow a-4< 0\)
\(\Rightarrow\frac{1}{8}\left(2a-3\right)^2\left(a-4\right)< 0\Rightarrow P\le\frac{9}{2}\)
Dấu "=" xảy ra khi \(a=\frac{3}{2}\) ; \(\left\{{}\begin{matrix}\frac{3}{2}+b+c=3\\b=c+\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow b=...;c=...\)