Đề chơi căng nhỉ?
a) Dễ chứng minh VP =< 3
BĐT \(\Leftrightarrow\left(\frac{a+b}{1+a}-1\right)+\left(\frac{b+c}{1+b}-1\right)+\left(\frac{c+a}{1+c}-1\right)\ge0\)
\(\Leftrightarrow\frac{b-1}{1+a}+\frac{c-1}{1+b}+\frac{a-1}{1+c}\ge0\)
\(\Leftrightarrow\frac{\left(b-1\right)^2}{\left(1+a\right)\left(b-1\right)}+\frac{\left(c-1\right)^2}{\left(1+b\right)\left(c-1\right)}+\frac{\left(a-1\right)^2}{\left(1+c\right)\left(a-1\right)}\) >=0
Áp dụng BĐT Cauchy-Schwarz dạng Engel vào VT ta có đpcm.
P/s: Èo, sao đơn giản thế nhỉ? Em có làm sai chỗ nào chăng?
a, Ta có \(\frac{a+b}{a+1}=\frac{\left(a+b\right)\left(a+1\right)-a\left(a+b\right)}{a+1}=a+b-\frac{a\left(a+b\right)}{a+1}\)
Mà \(\frac{1}{a+1}\le\frac{a+1}{4a}\)
=> \(\frac{a+b}{1+a}\ge a+b-\frac{\left(a+1\right)\left(a+b\right)}{4}=\frac{3}{4}\left(a+b+c\right)-\frac{1}{4}a^2-\frac{1}{4}ab\)
Khi đó
\(Vt\ge\frac{3}{2}\left(a+b+c\right)-\frac{1}{4}\left(a^2+b^2+c^2\right)-\frac{1}{4}\left(ab+bc+ac\right)\)
=> \(VT\ge\frac{9}{2}-\frac{1}{4}\left(9-2ab-2bc-2ac\right)-\frac{1}{4}\left(ab+bc+ac\right)\)
=> \(VT\ge\frac{9}{4}+\frac{1}{4}\left(ab+bc+ac\right)\)
Lại có \(ab+bc+ac\le\frac{1}{3}\left(a+b+c\right)^2=3\)
=> \(VT\ge ab+bc+ac\)(ĐPCM)
Dấu bằng xảy ra khi a=b=c=1
b,Ta có \(\frac{a}{b\left(a+b^2\right)}=\frac{a+b^2-b^2}{b\left(a+b^2\right)}=\frac{1}{b}-\frac{b}{a+b^2}\)
Mà \(a+b^2\ge2b\sqrt{a}\)
=> \(\frac{a}{b\left(a+b^2\right)}\ge\frac{1}{b}-\frac{1}{2\sqrt{a}}\)
Lại có \(\frac{1}{\sqrt{a.1}}\le\frac{1}{2}\left(\frac{1}{a}+1\right)\)
=> \(\frac{a}{b\left(a+b^2\right)}\ge\frac{1}{b}-\frac{1}{4}.\left(\frac{1}{a}+1\right)\)
Khi đó
\(VT\ge\frac{3}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{3}{4}\)
Mà \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=3\)
=> \(VT\ge\frac{9}{4}-\frac{3}{4}=\frac{3}{2}\)(ĐPCM)
Dấu bằng xảy ra khi a=b=c=1
Bất đẳng thức được viết lại thành
\(\sum\frac{3-a}{1+a}\ge ab+bc+ca\)
Mà \(ab+bc+ca\le3\) nên ta chỉ cần chứng minh
\(\sum\frac{3-a}{1+a}\ge3\)
Ta chứng minh bất đẳng thức phụ sau
\(\frac{3-a}{1+a}\ge2-a\)
\(\Leftrightarrow\left(a-1\right)^2\ge0\)
Thiết lập các bất đẳng thức tương tự ta có điều phải chứng minh
(2) The art of Mathematics - Trao Đổi Toán Học
Mình tổng quát bài toán ở đây