cho các số thực dương a,b ,c thỏa mãn ab+ac+bc=abc.tìm gtnn của
P = \(\frac{\sqrt{b^2+2a^2}}{ab}+\frac{\sqrt{c^2+2b^2}}{bc}+\frac{\sqrt{a^2+2c^2}}{ca}\)
cho ab+bc+ca=abc.tìm giá trị nhỏ nhất của a-1/c^2+b-1/c^2+c-1/b^2
1, cho a>0 b>0 thỏa mãn a+b=5.Tòm GTNN của P=\(\frac{1}{a}\)+\(\frac{1}{b}\)
2/cho a>0,b>0,c>0 và a+b+c=1 Tìm GTNN của A=\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
cho a,b,c thoả mãn a,b,c>0 và a+b+c<=1. tìm GTNN của a^2 + b^2 + c^2 + 1/a^2 + 1/b^2 + 1/c^2
cho a,b,c ϵ R thỏa mãn a≥1; b≥1; 0≤c≤1 và a+b+c=3. Tìm GTLN và GTNN của P = (a2+b2+c2)/ab+bc+ca
Cho a,b,c > 0 và a+b+c=3. Tìm GTNN của P=\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Tìm GTLN và GTNN (nếu có) của M = \(\frac{4x+1}{x^2+3}\)
Cho a,b,c ? 0 và a + b + c = 3. Tìm GTNN của A = \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
a, Cho a,b,c > 0. cmr : P = 1/a+3b + 1/b+3c + 1/c+3a >= 1/a+2b+c + 1/b+2c+a + 1/c+2a+b
b, Cho a,b > 0 : a^2 + b^2 = 18 . Tìm GTNN của biểu thức : Q = 2a + 2b + a^2/b + b^2/a
Ai làm nhanh và đúng nhất mk tick cho nha
cho a,b,c>0 và a+b+c<=3/2 . Tìm GTNN của biểu thức:
\(S=a^2+b^2+c^2+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)