\(a^3+b^3+c^3\ge3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc\ge0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\ge0\)(1)
Vì \(a;b;c>0\Rightarrow a+b+c>0\) (2)
Do đó ta cần phải CM : \(a^2+b^2+c^2-ab-ac-bc\ge0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)Luôn đúng (3)
Từ (2) ; (3) => BĐT (1) đúng
\(\Rightarrow a^3+b^3+c^3\ge3abc\) đúng (ĐPCM)