với a;b;c;x;y;z > 0 chứng minh \(\left(ax+by+cz\right)\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)\ge\left(a+b+c\right)^2\)
Bài 1 cho x,y,z>2014 và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{1007}\)
chứng minh rằng \(\sqrt{x+y+z}\ge\sqrt{x-2014}+\sqrt{y-2014}+\sqrt{z-2014}\)
Bài 2
cho a,b,c>0. chứng minh rằng
\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge\frac{4}{ab+bc+ca}\)
Cho x,y,z là những số thực dương và các số thực a,b,c
Chứng minh: \(\left(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\right)\left(x+y+z\right)\ge\left(a+b+c\right)^2\)
CHO a,b,c>0 thỏa mãn: \(a^2b^2+b^2c^2+c^2a^2\ge a^2+b^2+c^2\)
CMR: \(\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(a^2+c^2\right)}\ge\frac{\sqrt{3}}{2}\)
ĐẶT \(A=\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(c^2+a^2\right)}\)
ĐẶT:\(\frac{1}{a}=x,\frac{1}{y}=b,\frac{1}{z}=c\)
\(\Rightarrow x^2+y^2+z^2\ge1\)
\(\Rightarrow A=\frac{x^3}{y^2+z^2}+\frac{y^3}{z^2+x^2}+\frac{z^3}{z^2+y^2}\)
TA CÓ:
\(x\left(y^2+z^2\right)=\frac{1}{\sqrt{2}}\sqrt{2x^2\left(y^2+z^2\right)\left(y^2+z^2\right)}\le\frac{1}{\sqrt{2}}\sqrt{\frac{\left(2x^2+2y^2+2z^2\right)^3}{27}}=\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)TƯƠNG TỰ:
\(y\left(x^2+z^2\right)\le\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2},z\left(x^2+y^2\right)\le\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)LẠI CÓ:
\(A=\frac{x^3}{y^2+z^2}+\frac{y^3}{x^2+z^2}+\frac{z^3}{x^2+y^2}=\frac{x^4}{x\left(y^2+z^2\right)}+\frac{y^4}{y\left(x^2+z^2\right)}+\frac{z^4}{z\left(x^2+y^2\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x\left(y^2+z^2\right)+y\left(x^2+z^2\right)+z\left(x^2+y^2\right)}\ge\frac{1}{3.\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}}
\)\(\ge\frac{\sqrt{3}}{2}\sqrt{x^2+y^2+z^2}\ge\frac{\sqrt{3}}{2}\)
DẤU BẰNG XẢY RA\(\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\Rightarrow DPCM\)
1. Chứng minh BĐT
a, \(a^2+b^2+c^2+\frac{3}{4}\ge-a-b-c\)
b, \(2a^2+2b^2+8\ge2ab+a+b\)
2. Cho x,y,z \(\ge0\). Chứng minh \(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge3\)
3. Cho \(a,b,c\ge0,a+b+c=1\).Chứng minh \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
4. Cho \(x,y,z\ge0\)Chứng minh \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8xyz\)
\(CMR:\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c},\forall x,y,z,a,b,c>0\)
chứng minh bất đẳng thức
\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)
Bài 1: Chứng minh bất đẳng thức:
a) \(a^2+b^2+c^2+\frac{3}{4}\ge-a-b-c\)
b) \(2a^2+2b^2+8\ge2ab+4\left(a+b\right)\)
Bài 2: Cho 3 số dương x,y,z. Chứng minh: \(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge3\)
Bài 3: Cho 3 số dương a,b,c có tổng =1. cminh: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
Bài 4: Cho \(x,y,z\ge0\)
Chứng minh: \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8xyz\)
1.cho a, b , c >0 . Chứng minh \(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge a+b+c\)
2. Cho x , y , z \(\ge\)0 thỏa mãn x+y+z =2
tìm Min P = \(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)