\(0\le a;b;c\le1\Rightarrow a+b^2+c^3\le a+b+c\)
\(\Rightarrow a+b^2+c^2-ab-ac-bc\le a+b+c-ab-bc-ca\) (1)
Mặt khác cũng do \(0\le a;b;c\le1\)
\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)
\(\Leftrightarrow1-abc-a-b-c+ab+bc+ca\ge0\)
\(\Leftrightarrow a+b+c-ab-bc-ca\le1-abc\le1\) (2)
(1);(2) \(\Rightarrow a+b^2+c^3-ab-bc-ca\le1\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(1;0;0\right)\) và hoán vị