cho a,b,c>0 thoả mãn a+b+c=1
chứng minh rằng √(a+bc) +√(b+ca) +√(c+ab)≥1+√bc+√ca+√ab
cho a,b,c>0 thoả mãn a+b+c=1
chứng minh rằng √(a+bc) +√(b+ca) +√(c+ab)≥1+√bc+√ca+√ab
cho a,b,c>=0, a+b+c=1. chứng minh rằng (a-bc)/(a+bc)+(b-ca)/(b+ca)+(c-ab)/(c+ab)<=3/2
cho a,b,c>0, chứng minh:
1)ab+bc+ca >= a√ab+b√ca+c√ab
2)a^2+b^2+c^2 >= a√ab+b√ca+c√ab
cho a,b>0. Chứng minh rằng
\(\frac{2}{a^2+bc}+\frac{2}{b^2+ca}+\frac{2}{c^2+ab}\le\frac{1}{bc}+\frac{1}{ca}+\frac{1}{ab}\)
cho 3 số dương a, b, c thoả mãn ab+bc+ca=1. chứng minh rằng 1/ab + 1/bc + 1/ca >=3+ √(1/a²)+1 +√(1/b²)+1 +√(1/c²)+1
Cho a,b,c>0, chứng minh:\(\frac{1}{a^2+ab+bc}+\frac{1}{b^2+bc+ca}+\frac{1}{c^2+ca+ab}\ge\frac{\left(a+b+c\right)^2}{\left(ab+bc+ca\right)^2}\)
Cho a,b,c>0 thỏa mãn \(\dfrac{1}{a+b+1}+\dfrac{1}{b+c+1}+\dfrac{1}{c+a+1}\ge1\). Chứng minh rằng \(a+b+c\ge ab+bc+ca\)
Cho a, b, c > 0. Chứng minh : \(\frac{1}{2a^2+bc}+\frac{1}{2b^2+ca}+\frac{1}{2c^2+ab}\le\left(\frac{a+b+c}{ab+bc+ca}\right)^2\)