Sửa đề: Chứng minh \(\frac{a^2+b^2}{c^2+b^2}=\frac{a}{c}\)
Ta có: \(\frac{\overline{ab}}{\overline{bc}}=\frac{b}{c}\)
=>\(\frac{10a+b}{10b+c}=\frac{b}{c}\)
=>c(10a+b)=b(10b+c)
=>10ac+bc=10b^2+bc
=>\(10ac=10b^2\)
=>\(ac=b^2\)
=>\(\frac{a}{b}=\frac{b}{c}\)
Đặt \(\frac{a}{b}=\frac{b}{c}=k\)
=>\(\begin{cases}b=ck\\ a=bk=ck\cdot k=ck^2\end{cases}\)
\(\frac{a^2+b^2}{c^2+b^2}=\frac{\left(ck^2\right)^2+\left(ck^{}\right)^2}{c^2+\left(ck\right)^2}=\frac{c^2k^4+c^2k^2}{c^2+c^2k^2}=\frac{c^2k^2\left(k^2+1\right)}{c^2\left(1+k^2\right)}=k^2\)
\(\frac{a}{c}=\frac{ck^2}{c}=k^2\)
Do đó: \(\frac{a^2+b^2}{c^2+b^2}=\frac{a}{c}\)