w!!!!!!!!!h!!!!!!!!!!!!!!!a!!!!!!!!!!!!!!!!!!t!!!!!!!!!!!!!!!!!!!!!!!t!!!!!!!!!!!!!!!!!!h!!!!!!!!!!!!!!!!!!!!e!!!!!!!!!!!!!!!!!!!f!!!!!!!!!!!!!!!!u!!!!!!!!!!!!!!!!!!!!!!!!!!!c!!!!!!!!!!!!!!!!!!!!!!!!k?
w!!!!!!!!!h!!!!!!!!!!!!!!!a!!!!!!!!!!!!!!!!!!t!!!!!!!!!!!!!!!!!!!!!!!t!!!!!!!!!!!!!!!!!!h!!!!!!!!!!!!!!!!!!!!e!!!!!!!!!!!!!!!!!!!f!!!!!!!!!!!!!!!!u!!!!!!!!!!!!!!!!!!!!!!!!!!!c!!!!!!!!!!!!!!!!!!!!!!!!k?
Cho a, b, c > 0. CMR: M = \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)\(\notin\)Z.
CMR với \(a,b,c\ne0\)thì \(M=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\notin Z\)
Cho \(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\) với a , b , c > 0 . Chứng minh rằng : \(M\notin Z\) .
1. Cho a,b,c,x,y,z khác 0 thỏa mãn:
\(\frac{7cy-5bz}{x}=\frac{2az-7cx}{y}=\frac{5bx-2ay}{z}\)
CMR: \(\frac{2a}{x}=\frac{5b}{y}=\frac{7c}{z}\)
2.Cho a,b,c,x,y,z khác 0 thỏa mãn: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
CMR: \(\frac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\frac{1}{a^2+b^2+c^2}\)
3.Cho a,b,c thỏa mãn \(\frac{a}{2016}=\frac{b}{2017}=\frac{c}{2018}\)
CMR: 4(a-b)(b-c)=(a-c)2
4. Cho a,b,c thỏa mãn:\(\frac{a}{x}=\frac{b}{x+1}=\frac{c}{x+2}\)
CMR: 4(a-b)(b-c)=(a-c)2
5. Cho a,b,c thỏa mãn:
\(\frac{a}{-2017}=\frac{b}{-2016}=\frac{c}{-2015}\)
CMR: 4(a-b)(b-c)=(a-c)2
6. Cho a,b,c khác 0 và \(\frac{b+c+a}{a}=\frac{a+b-c}{b}=\frac{c+a-b}{c}\)
Tính giá trị biểu thức A=\(\frac{\left(a-b\right)\left(c+b\right)\left(c-a\right)}{abc}\)
1. Cho \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\) trong đó b khác 0. CMR: c = 0
2.Cho tỉ lệ thức \(\frac{a+b}{b+c}=\frac{c+d}{a+d}\) . CMR: a = c hoặc a+b+c+d=0
3.Tìm các số x,y,z biết rằng:
\(\frac{y+z+1}{x}=\frac{x+z+z}{y}=\frac{y+z-3}{z}=\frac{1}{x+y-z}\)
CÁC BẠN NHỚ GIẢI CHI TIẾT GIÙM MK MKA, MK ĐAG CẦN GẤP LẮM!!!
Cho a(y+z) = b(z+x) = c(x+y) với a khác b khác c và a, b, c khác 0. CMR \(\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\)
cho a,b,c,x,y,z là các số thực khác 0 thỏa mãn: \(\frac{x^2-yz}{a}=\frac{y^2-zx}{b}=\frac{z^2-xy}{c}\). CMR:\(\frac{a^2-bc}{x}=\frac{b^2-ca}{y}=\frac{c^2-ab}{z}\)
Cho a,b,c,x,y,z khác 0 thỏa mãn : \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
CMR : \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}=\frac{\left(a+b+c\right)^2}{x+y+z}\)
Giúp mình nhé!!!!!! Thanks
Cho các số hữu tỉ \(x=\frac{a}{b};y=\frac{c}{d};z=\frac{a+c}{b+d}\) (a,b,c,d \(\in\) Z ; b>0 ; d>0)
CMR nếu x<y thì x<z<y