BĐT cần chứng minh tương đương với
\(\left(a+b\right)\left(1+ab\right)\ge4ab\)
Thật vậy
Áp dụng bđt AM-GM ta có
\(a+b\ge2\sqrt{ab}\)
\(1+ab\ge2\sqrt{ab}\)
Nhân từng vế 2 bđt trên => đpcm
Dấu "=" xảy ra khi a=b=c>0
lộn, a=b>0
\(a+b\ge\frac{4ab}{1+ab}\Leftrightarrow\left(a+b\right)\left(1+ab\right)\ge4ab\Leftrightarrow a+b+a^2b+ab^2\ge4ab\Leftrightarrow\left(a+ab^2-2ab\right)+\left(b+a^2b-2ab\right)\ge0\Leftrightarrow a\left(b^2-2b+1\right)+b\left(a^2-2a+1\right)\ge0\Leftrightarrow a\left(b-1\right)^2+b\left(a-1\right)^2\ge0\)(Đúng do a, b > 0 và \(\left(a-1\right)^2\ge0,\left(b-1\right)^2\ge0\))
Đẳng thức xảy ra khi a = b > 0
Chỉ ra rõ a = b = 1 nha, mik nhầm