Dùng điểm rơi a=b=1
Gọi M là biểu thức đầu bài ta có
\(M=\frac{3}{2}\sqrt{\left(3a+1\right).4}+\sqrt{\left(3b+1\right).4}\le\frac{3}{4}\left(3a+5\right)+\frac{1}{2}\left(3b+5\right)\)
\(=\frac{9a+6b}{4}+\frac{25}{4}=\frac{15}{4}+\frac{25}{4}=10\)
Dùng điểm rơi a=b=1
Gọi M là biểu thức đầu bài ta có
\(M=\frac{3}{2}\sqrt{\left(3a+1\right).4}+\sqrt{\left(3b+1\right).4}\le\frac{3}{4}\left(3a+5\right)+\frac{1}{2}\left(3b+5\right)\)
\(=\frac{9a+6b}{4}+\frac{25}{4}=\frac{15}{4}+\frac{25}{4}=10\)
\(\frac{\sqrt{a^2+5}+\sqrt{b^2+5}+\sqrt{6\left(c^2+5\right)}}{7a+7b+8c}\)ab+bc+ca=3 Tìm gtln của biểu thức trên( Sử dụng bđt cauchy)
Cho a,b,c\(\ge0\)thỏa mãn\(a+b+c=1\)
a)Tìm max A=\(\sqrt{2a^2+a+1}+\sqrt{2b^2+b+1}+\sqrt{2c^2+c+1}\)
b)Tìm min,max B=\(\sqrt{3a+1}+\sqrt{3b+1}+\sqrt{3c+1}\)
c)Tìm min,max C=\(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c}\)
Cho a,b,c là các số thực dương có tổng bằng 1. Tìm GTNN của biểu thức
\(P=\dfrac{a^3}{\sqrt{b^2+3}}+\dfrac{b^3}{\sqrt{c^2+3}}+\dfrac{c^3}{\sqrt{a^2+3}}\)(Chứng minh BĐT dựa vào BĐT Cauchy)
chứng minh rằng trong các số 3a^2+2/b^3;3b^2+2/c^3;3c^2+2/a^3 có 1 số lớn hơn hoặc bằng 5
Sử dụng bđt Cauchy
cm voi moi so duong a b c thi
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\left(1+\sqrt{2}+\sqrt{3}\right)\left(\frac{1}{a+\sqrt{2b}+\sqrt{3a}}+\frac{1}{b+\sqrt{2c}+\sqrt{3a}}+\frac{1}{c+\sqrt{2a}+\sqrt{3b}}\right)\)
Sử dụng BĐT Bunhiacopxki giải bài toán sau:
Cho các số thực dượng a,b,c thỏa mãn a+b+c=3. CMR: \(\sqrt{2a^2+\frac{7}{b^2}}+\sqrt{2b^2+\frac{7}{c^2}}+\sqrt{2c^2+\frac{7}{a^2}}\ge9\)
Mong mọi người giúp đỡ!
Hello everyone! Today, i will give you 2 questions about Maths, oK??
You should use English if you can :)
Bài 1: Cho \(a,b,c\) dương thỏa mãn a + b + c = 2020
Tìm Min của: \(P=\sqrt{2a^2+ab+2b^2}+\sqrt{2b^2+bc+2c^2}+\sqrt{2c^2+ca+2a^2}\)
Bài 2: Cho \(a,b,c\) dương thỏa mãn abc = 1
Chứng minh: \(\frac{1}{\sqrt{ab+a+2}}+\frac{1}{\sqrt{bc+c+2}}+\frac{1}{\sqrt{ca+a+2}}\le\frac{3}{2}\)
Gợi ý B2: Sử dụng BĐT phụ \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)
Good luck !!
Cho a,b,c>0 sao cho a+b+c=1. CMR \(\sqrt[3]{3a+1}+\sqrt[3]{3b+1}+\sqrt[3]{3c+1}\le3\sqrt[3]{2}\)
Bài tập sử dụng BĐT Cauchy
B1: Cho số thực \(a\ge6\). Tìm GTNN của biểu thức
\(A=a^2+\frac{18}{a}\)
B2: Cho các thực dương a,b thỏa mãn \(a+b\le1\) . Tìm GTNN của biểu thức
\(A=\frac{1}{1+a^2+b^2}+\frac{1}{2ab}\)
B3: Cho a,b là các số thực dương tùy ý. Tính GTNN của biểu thức
\(A=\frac{a+b}{\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}\)