Mình cũng đang làm
bài này và cũng chưa
biết cách giải
mong các bạn giúp với
Mình cũng đang làm
bài này và cũng chưa
biết cách giải
mong các bạn giúp với
Cho các số dương a, b thỏa mãn: a+b+1=8ab
Tìm giá trị nhỏ nhất của biểu thức: A=\(\frac{a^2+b^2}{a^2b^2}\)
Cho a;b;c>0 thỏa mãn a2+b2+c2=6.Tìm Min của bt:
P=\(\frac{a}{bc}+\frac{2b}{ca}+\frac{5c}{ab}\)
Cho a,b là các số thực dương thỏa mãn a^2+2ab+2b^2-2b=8
1,CMR 0<a+b< hoặc = 3
2,Tìm min P=a+b+8/a+2/b
Cho a,b>0 thoả mãn: a+b+1=8ab
Tính max của \(\frac{a^2+b^2}{a^2b^2}\)
Cho a,b,c > 0 thỏa mãn a+b+c=1. Tìm Min \(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}+\frac{1}{9abc}\)
a,cho x+y>=6;x,y>0,tìm min của p=5x+3y+10/x+8/y
b, a;b;c là 3 số thực dương thoả mãn a+2b+3c>=20. Tìm min của a+b+c+3/a+9/b+4/c
c,Cho x;y>0 thoả mãn x+y<=1, tìm min A=(1-1/x)-(1/y^2)
d,Cho a;b;c >0, a+b+c=<3/2, tìm min của A=a+b+c+1/a+1/b+1/c
e, Cho a,b dương,a;b=<1, tìm min của P=1/(a^2+b^2) +1/ab
g,Cho a;b;c>0, a+b+c=<1, tìm min của P=a+b+c+2(1/a+1/b+1/c)
1 Tìm giá trị nhỏ nhất của A=\(\frac{a^2+b^2}{a^2b^2}\)biết rằng a,b là hai số dương thỏa mãn a+b+1=8ab
2 Tìm giá trị nhỏ nhất của biểu thức K= xy(x-2y)(y+6)+13x2+4y2-26x+24y+46
Bài 1: Cho a,b,c là các số thực dương thỏa nãm a+b+c=1. Tìm GTNN của biểu thức
\(H=\frac{a+bc}{b+c}+\frac{b+ca}{c+a}+\frac{c+ab}{a+b}\)
Bài 2:Cho a,b là các số thực dương thỏa mãn \(a^2-6ab-2b^2=0\)
Tính giá trị của biểu thức \(P=\frac{ab}{a^2+2b^2}\)
Cho a, b, c \(\ne\)0 thỏa mãn \(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}=0\). Tính : \(E=\frac{a^2b^2c^2}{a^2b^2+b^2c^2-a^2c^2}+\frac{a^2b^2c^2}{b^2c^2+c^2a^2-a^2b^2}+\frac{a^2b^2c^2}{c^2a^2+a^2b^2-b^2c^2}.\)