Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hạ Vy

Cho a,b>0 thỏa mãn \(a^2+b^2=2.\) Tìm Min của\(\frac{a^3}{2a+3b}+\frac{b^3}{3a+2b}\)

Nguyễn Việt Lâm
3 tháng 6 2020 lúc 20:31

\(P=\frac{a^3}{2a+3b}+\frac{b^3}{3a+2b}=\frac{a^4}{2a^2+3ab}+\frac{b^4}{3ab+2b^2}\)

\(P\ge\frac{\left(a^2+b^2\right)^2}{2\left(a^2+b^2\right)+6ab}\ge\frac{\left(a^2+b^2\right)^2}{2\left(a^2+b^2\right)+3\left(a^2+b^2\right)}=\frac{a^2+b^2}{5}=\frac{2}{5}\)

Dấu "=" xảy ra khi \(a=b=1\)


Các câu hỏi tương tự
๖ۣۜDũ๖ۣۜN๖ۣۜG
Xem chi tiết
Y
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
Xem chi tiết
Nguyễn Thị Kim chung
Xem chi tiết
Trần Anh Thơ
Xem chi tiết
Nguyễn Bùi Đại Hiệp
Xem chi tiết
Phúc Ruby
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
Xem chi tiết
Trần Diệu Linh
Xem chi tiết