1 ) Do \(3a-b=5\Rightarrow b=3a-5\)
Ta có : \(A=\frac{5a-b}{2a+5}-\frac{3b-3a}{2b-5}=\frac{5a-3a+5}{2a+5}-\frac{3\left(3a-5\right)-3a}{2\left(3a-5\right)-5}=\frac{2a+5}{2a+5}-\frac{6a-15}{6a-15}=1-1=0\)
Vậy \(A=0\)
2 ) \(P=x^4+x^2+1=\left(x^4+2x^2+1\right)-x^2=\left(x^2+1\right)^2-x^2=\left(x^2-x+1\right)\left(x^2+x+1\right)\)
Để P là số nguyên tố thì \(Ư\left(P\right)=\left\{1;P\right\}\)
Vì x dương \(\Rightarrow x^2+x+1>x^2-x+1\)
\(\Rightarrow x^2-x+1=1\)
\(\Rightarrow x\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(L\right)\\x=1\end{matrix}\right.\)
Vậy x = 1 thì P là số nguyên tố