Cho các số thực dương a, b,c thỏa mãn a+b+c=9. CMR: \(\frac{a^2}{b+1}+\frac{b^2}{c+1}+\frac{c^2}{a+1}\ge\frac{27}{4}\)Mong các chuyên toán hỗ trợ ạ!
1. cho a,b>0 là các số thỏa mãn a+b=2 CMR A^4+B^4>=A^3+B^3
Cho các số thực dương a, b, c thỏa mãn \(a^2+b^2+c^2=3\) Tìm GTNN của \(P=\frac{a^4}{b+1}+\frac{b^4}{c+2}+\frac{c^4}{a+2}\)Mong cái chuyên toán giúp đỡ ạ!
Cho các số thực a, b, c thỏa mãn a+b+c=0.cmr a^4+b^4+c^4= 1/2(a^2+b^2+c^2)^2
1)cho 3 số x, y,z thỏa mãn điều kiện x+y+z=2018 và x^3+y^3+z^3=2018^3. Cmr (x+y+z)^3=x^2017+y^2017+z^2017
2)
tìm các cặp số nguyên (x y) biết x^2-4xy+5y^2-16=0
3)Cho 3 số a,b,c thỏa mãn a+b+c=0 và a^2+b^2+c^2=2018
4)tính giả trị biểu thức A=a^4+b^4+c^4
Cho ba số a,b,c thỏa mãn a+b+c=0.CMR (a^2 +b^2 +c^2)^2 =2(a^4 +b^4 +c^4)
cho các số a,b,c thỏa mãn: a+b+c=3/2
CMR: a^2+b^2+c^2=3/4
Cho hai số thực a, b, c thỏa mãn a+b+c=0 cmr a^4+b^4+c^4= 1/2(a^2+b^2+c^2)^2