Cho a, b > 0, a + b = 1. Tìm giá trị nhỏ nhất của biểu thức
S = ( 1 + 1/a).(1 + 1/b)
Cho a>0, b>0, \(a+b\le1\)
tìm giá trị nhỏ nhất của biểu thức S=\(\frac{a}{1+b}+\frac{b}{1+a}+\frac{1}{a+b}\)
1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.
2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.
3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)
4. Tìm liên hệ giữa các số a và b biết rằng: a b a b
5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a
b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8
6. Chứng minh các bất đẳng thức:
a) (a + b)2 ≤ 2(a2 + b2) b) (a + b + c)2 ≤ 3(a2 + b2 + c2)
7. Tìm các giá trị của x sao cho:
a) | 2x – 3 | = | 1 – x | b) x2 – 4x ≤ 5 c) 2x(2x – 1) ≤ 2x – 1.
8. Tìm các số a, b, c, d biết rằng : a2 + b2 + c2 + d2 = a(b + c + d)
9. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của avà b thì M đạt giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất đó.
10. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. CMR giá trị nhỏ nhất của P bằng 0.
11. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau :
x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0
Cho \(a,b\) >0 và \(a+b\le2\) . Tìm giá trị nhỏ nhất của biểu thức: \(P=\sqrt[]{a\left(b+1\right)}+\sqrt[]{b\left(a+1\right)}\)
Cho a>0; b>0; a+b\(\le\)1 . Tìm giá trị nhỏ nhất của biểu thức M = a^2 + b^2 + 1/a^2 + 1/b^2
a, Cho biểu thức A = 3 x - 1 + 1 x + 1 . Tìm x với A = 1 2
b, Tính P = A: 1 x + 1 . Tìm x với P<0
c, Tìm giá trị nhỏ nhất của biểu thức M = x + 12 x - 1 . 1 P
Cho a > 0, b > 0 thỏa mãn a + b = 1
Tìm giá trị nhỏ nhất của biểu thức P = (a2 + 1/b2) (b2 + 1/a2)
tìm giá trị nhỏ nhất của biểu thức: M=(1+a)(1+1/b)+(1+b)(1+1/a) với a>0; b>0 và a2+b2=1
Cho a>0,b>0;a^2+b^2=1.Tìm giá trị lớn nhất của biểu thức S=ab+2(a+b)