Để so sánh a/b và a+2016/b+2016 ta xét hiệu.
\(H=\frac{a}{b}-\frac{a+2016}{b+2016}=\frac{ab+2016a-ab-2016b}{b\left(b+2016\right)}=\frac{2016\left(a-b\right)}{b\left(b+2016\right)}.\)
Do b dương, nên H dương khi a>b =>\(\frac{a}{b}>\frac{a+2016}{b+2016}\)H âm khi a<b => \(\frac{a}{b}< \frac{a+2016}{b+2016}\)H = 0 khi a=b => \(\frac{a}{b}=\frac{a+2016}{b+2016}\)Mở rộng bài toán ta được: \(\forall a;b\in R;b>0;m>0\) thì
\(\frac{a}{b}>\frac{a+m}{b+m}\)khi \(a>b\);\(\frac{a}{b}< \frac{a+m}{b+m}\)khi \(a< b\);\(\frac{a}{b}=\frac{a+m}{b+m}\)khi \(a=b\);