cho a, b là các số thực thỏa mãn điều kiện a^2 + b^2 = 4 + ab Chứng minh rằng 8/3 ≤ a^2 + b^2 ≤ 8
Dấu bằng xảy ra khi nào?
b. Cho (x,y) là nghiệm của phuơng trình x^2 + 3y^2 + 2xy - 10x - 14y+18 =0. Tìm nghiệm (x,y ) sao cho S = x + y đạt giá trị lớn nhất và nhỏ nhất .
Cho a, b là các số thực thỏa mãn điều kiện a^2 + b^2 = 4 + ab Chứng minh rằng 8/3 ≤ a^2 + b^2 ≤ 8
Dấu bằng xảy ra khi nào?
b. Cho (x,y) là nghiệm của phuơng trình x^2 + 3y^2 + 2xy - 10x - 14y+18 =0. Tìm nghiệm (x,y ) sao cho S = x + y đạt giá trị lớn nhất và nhỏ nhất .
Từ 8 chữ số 1; 2; 3; 4; 5; 6; 7; 8:
a) Lập số tự nhiên N nhỏ nhất có 8 chữ số khác nhau chia hết cho 1111;
b) Lập số tự nhiên M lớn nhất có 8 chữ số khác nhau chia hết cho 1111;
c) Lập được bao nhiêu số tự nhiên có 8 chữ số khác nhau chia hết cho 1111?
tìm số tự nhiên n sao cho 3n +55 là số chính phương
cho a thuộc n sao cho a+1 và 2a+1đồng thời là hai số chính phương . cm a chia hết cho 24
cho a,b,c thỏa mãn a2+b2+c2 <= 8 tìm giá trị nhỏ nhất của H = ab+bc+2ac
1.Cho 51 số nguyên dương khác nhau và đều nhỏ hơn 100. Chứng minh rằng có thể chọn ra 3 số a,b,c trong 51 số đã cho thỏa mãn hệ thức a=b+c
2.Tìm số tự nhiên n nhỏ nhất để các phân số \(\frac{n+7}{3};\frac{n+8}{4};...;\frac{n+2019}{2015};\frac{n+2020}{2016}\)
đều là các phân số tối giản
Cho a, b, n là các số nguyên dương. Biết rằng với mọi số tự nhiên k khác b ta đều có k^n - a chia hết cho k - b. CMR: a = b^n
Tìm số tự nhiên lớn nhất, nhỏ nhất (tương ứng đặt là a,b) có dạng \(\overline{1x2y3z}\) chia hết cho \(7\).
Tìm số tự nhiên N nhỏ nhất và số tự nhiên M lớn nhất gồm 12 chữ số, biết rằng M và N chia cho các số 1256; 3568 và 4184 đều cho số dư là 973
Tìm số tự nhiên n có 3 chữ số sao cho nó chia hết số các chữ số từ 1 đến n.
Lưu ý: Khi ta viết a chia hết cho b thì ta đọc a chia hết cho b hoặc b chia hết a