cho a;b;c;d là các số thực khác 0 thảo mãn
\(\frac{a-b+c+d}{b}=\frac{a+b-c+d}{c}=\frac{a+b+c-d}{d}=\frac{b+c+d-a}{a}\)
Tính giá trị của biểu thức
\(M=\frac{\left(a+b+c\right)\left(a+b+d\right)\left(b+c+d\right)\left(c+d+a\right)}{abcd}\)
a) Tìm giá trị lớn nhất của biểu thức: \(B=\left|3x-2\right|-\left|3x+7\right|+1\)
b) Cho \(A=\frac{10^{2006}+53}{9}\)Chứng minh rằng A là một số tự nhiên.
c) Cho \(S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\)Chứng minh rằng S không phải là số tự nhiên.
a) Tìm số tự nhiên x,y biết \(\left|x-4\right|+\left|x-10\right|+\left|x+101\right|+\left|x+990\right|+\left|x+1000\right|=2004\)
b) Cho \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\) (với \(a,b,c\ne0;b\ne c\) ) chứng minh rằng \(\frac{a}{b}=\frac{a-c}{c-b}\)
c) Tìm giá trị nguyên của x để biểu thức \(M=\frac{2016x-2016}{3x+2}\) có giá trị nhỏ nhất
Tìm ba số dương a,b,c biết ab= c, bc = 4a, ac= 9b. Trả lời a=..., b=....., c=...
Giá trị x lớn nhất thõa mãn [ 2x-4 ] - [ 6x-3] = -1 là ...
GIá trị nhỏ nhất của A= \(\frac{-15}{\left[x-4\right]+1}\)là...
Giá trị của x và y biết [ x- y + 5 ] + [ x-1] = 0 laf...
Giá trị lớn nhất của A = 50 - [ 2x+3] là...
Biết \(\frac{x}{3}=\frac{y+1}{4}vàx-y=0\)Khi đó x^2 = y^2 = ....
Rút gọn biểu thức A = \(\frac{2b\left(2a-1\right)+6a-3}{2a+2ab-b-1}+2012vớia\ne\frac{1}{2};b\ne-1\).Ta được A = ...
Giải chi tiết giùm mình, mình tick cho
Câu 1: Tìm giá trị lớn nhất của biểu thức sau: \(P=\frac{4}{\left(x-3\right)^2+\left|y+7\right|+\frac{2}{3}}\)
Câu 2: Tìm giá trị nhỏ nhất của biểu thức \(P=\left|x-2012\right|+\left|x-2013\right|\)với x là số tự nhiên.
Câu 3: a) Với x, y là các số nguyên dương. Chứng minh rằng: \(\frac{1}{x}+\frac{1}{y}>=\frac{4}{x+y}\).
b) Cho a, b, c là độ dài 3 cạnh của 1 tam giác. Chứng minh rằng: \(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}>=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
1. Tìm các số a,b,c không âm thỏa mãn a+3c=8;a+2b=9 và tổng a+b+c có giá trị lớn nhất
2. Cho 3 số x,y,z khác 0 và x+y+z \(\ne\)0 thỏa mãn điều kiện:
\(\frac{\left(y+z-2x\right)}{x}=\frac{\left(z+x-2y\right)}{y}=\frac{\left(x+y-2z\right)}{z}\). Hãy chứng tỏ A = \(\left[1+\frac{x}{y}\right].\left[1+\frac{y}{z}\right].\left[1+\frac{z}{x}\right]\)là một số tự nhiên
Nhanh nha! Cảm ơn
1. Tìm giá trị nhỏ nhất của các biểu thức
a) C= \(x^2+3\left|y-2\right|-1\)
b)D= x+|x|
2. Tìm giá trị lớn nhất của các biểu thức.
a) A= \(5-\left|2x-1\right|\)
b)B= \(\frac{1}{\left|x-2\right|+3}\)
3. Tìm giá trị lớn nhất của biểu thức \(C=\frac{x+2}{\left|x\right|}\)với x là số nguyên.
1 . Cho các số a , b , c không âm thỏa mãn : \(a+3c=2016\); \(a+2b=2017\). Tìm giá trị lớn nhất của biểu thức \(P=a+b+c\)
2 . Tìm số tự nhiên n biết \(n+S\left(n\right)+S\left(S\left(n\right)\right)=60\)( Trong đó S(n) là tổng các chữ số của n )
Cho a,b,c là các số khác 0 thỏa mãn: \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
Tính giá trị của biểu thức: P = \(\left(1+\frac{b}{a}\right).\left(1+\frac{c}{b}\right).\left(1+\frac{a}{c}\right)\)