Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Điệp Hoàng Phương Ngọc

Cho a,b là các số dương thỏa mãn a.b=4.

Tìm giá trị nhỏ nhất của biểu thức: P=\(\frac{\left(a+b-2\right)\left(a^2+b^2\right)}{a+b}\)

Điệp Hoàng Phương Ngọc
17 tháng 2 2019 lúc 11:12

Vì (a-b)2 \(\ge\)\(\forall\)a,b\(\Rightarrow\)a2+b2 \(\ge\)2ab. Mà ab=4\(\Rightarrow\)a2+b2 \(\ge\)8.

\(\Rightarrow\)P=\(\frac{\left(a+b-2\right)\left(a^2+b^2\right)}{a+b}\)\(\ge\)\(\frac{\left(a+b-2\right).8}{a+b}\)

Đặt t=a+b\(\Rightarrow\)t\(\ge\)4 (Do a+b \(\ge\)2\(\sqrt{ab}\)= 4)

\(\Rightarrow\)P=\(\frac{\left(t-2\right).8}{t}\) = \(\frac{8t-16}{t}\)=\(8-\frac{16}{t}\) 

Vì t\(\ge\)\(\Rightarrow\)\(\frac{16}{t}\le\frac{16}{4}=4\)\(\Rightarrow-\frac{16}{t}\ge-4\)\(\Rightarrow\left(8-\frac{16}{t}\right)\ge8-4=4\)

\(\Rightarrow P\ge4.\)Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}a=b\\a.b=4\end{cases}\Leftrightarrow a=b=2}\)

Vậy P min = 4 \(\Leftrightarrow\)a=b=2.


Các câu hỏi tương tự
natsu dragneel
Xem chi tiết
Nguyễn Thị Kim Tuyến
Xem chi tiết
Phạm Trần Minh Trí
Xem chi tiết
Qasalt
Xem chi tiết
HUY hoàng nguyễn
Xem chi tiết
Nguyễn Văn Khoa
Xem chi tiết
Vu Dang Toan
Xem chi tiết
Truong Tuan Dat
Xem chi tiết
Nguyễn Minh Toàn
Xem chi tiết