a5+b5=a6+b6=a7+b7
Chắc đề phải vậy
a5+b5=a6+b6=a7+b7
Chắc đề phải vậy
Các bạn trình bày lời giải hoặc gợi ý nhé, mình cần gấp! Cảm ơn các bạn nhiều!
1. Tìm các số tự nhiên a, b, c sao cho a2 - b, b2 - c, c2 - a đều là các số chính phương.
2. Cho các số nguyên dương x, y thỏa mãn điều kiện x2 + y2 + 2x(y+1) - 2y là số chính phương. CMR: x = y
3. Tìm số nguyên n thỏa mãn (n2- 5)(n + 2) là số chính phương
4. Tìm các số tự nhiên a, b thỏa mãn a2 + 3b; b2 + 3a đều là các số chính phương
5. Cho các số nguyên a, b, c thỏa mãn a2 + b2 + c2 = 2(ab + bc + ca). CMR ab + bc + ca, ab, bc, ca đều là các số chính phương.
6. Cho các số nguyên (a -b)2 = a + 8b -16. CMR a là số chính phương.
7. Tìm các số tự nhiên m, n thỏa mãn 4m - 2m+1 = n2 + n + 6
1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố
2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố
3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương
4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p
5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab +c ( a + b )
Chứng minh: 8c + 1 là số cp
6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3
Chứng minh: 9x – 1 là lập phương đúng
7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c
8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1
Chứng minh: ( x + y )^2 + ( xy – 1 )^2 không phải là số cp
9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2
10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương
11, Cho các số nguyên n thuộc Z, CM:
A = n^5 - 5n^3 + 4n \(⋮\)30
B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ
C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42
1.Cho bốn số nguyên dương a,b,c,d thỏa mãn ab=cd.Chứng minh rằng \(a^5+b^5+c^5+d^5\)là hợp số.
2.Cho các số tự nhiên a và b.Chứng minh rằng:
a, Nếu\(a^2+b^2\)chia hết cho 3 thì a và b chia hết cho 3.
b, Nếu\(a^2+b^2\)chia hết cho 7 thì a và b chia hết cho 7.
3.Cho các số nguyên a,b,c.Chứng minh rằng:
a, Nếu a+b+c chia hết cho 6 thì \(a^3+b^3+c^3\)chia hết cho 6.
b, Nếu a+b+c chia hết cho 30 thì \(a^5+b^5+c^5\)chia hết cho 30
Cho a,b,c là các số dương thỏa mãn a+b+c=6. Tìm GTNN của Q=2/a+2/b+2/c
cho a,b là 2 so dương thỏa mãn a^5+b^5=a^7+b^7 . Chứng minh a^2+b^2 nhỏ hơn hoặc bằng ab+1 .Dấu đẳng thức xảy ra khi nào?
cho a, b là các số nguyên dương thỏa mãn a^3+b^3=a^5+b^5. CMR: a^2+b^2< hoặc =1+ab
cho a,b là 2 số dương thỏa mãn a+b<=(4)/(5).CMR a+b+(a+b)/(ab)>=29/5
cho a ,b là số dương thỏa mãn a^3 + b^3 = a^5 + b^5
CMR : a^2 + b^2 =< 1 + ab
cho các số dương a,b,c thỏa mãn điều kiện a+b+c=6. chững minh rằng: ab/6+a-c +bc/6+b-a + ca/6+c-b <=2