Từ giả thiết ta có: \(2=a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\Rightarrow1\ge\frac{a+b}{2}\)
Do đó \(VT\ge\left(\frac{a^3}{b}+ba\right)\left(\frac{a}{b^2}+\frac{b}{a^2}\right).\frac{a+b}{2}\)
\(\ge2a^2.\frac{2}{\sqrt{ab}}.\sqrt{ab}=4a^2\left(qed\right)\) (cô si or AM-gM gì đó)
Đẳng thức xảy ra khi ...(chị tự giải rõ nhá)