Cho 2 số a,b thỏa mãn a,b khác 0 CMR
\(a^2+b^2+\left(\frac{ab+1}{a+b}\right)^2\ge2\)
Cho a, b khác 0. Chứng minh:
\(\frac{a^2}{b^2}+\frac{b^2}{a^2}-1\ge2\left(\frac{a^2-b^2}{ab}\right)\)
cho ba số a,b,c khác nhau:
a)tính \(\frac{ab}{\left(b-c\right)\left(c-a\right)}+\frac{bc}{\left(c-a\right)\left(a-b\right)}+\frac{ca}{\left(a-b\right)\left(b-c\right)}\)
b)chứng minh rằng
\(\frac{a^2}{\left(b-c\right)^2}+\frac{b^2}{\left(c-a\right)^2}+\frac{c^2}{\left(a-b\right)^2}\ge2\)
Cho a,b,c phân biệt. CMR \(\left(\frac{a}{b-c}\right)^2+\left(\frac{b}{c-a}\right)^2+\left(\frac{c}{a-b}\right)^2\ge2\)
Cho a,b,c>0
CMR \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\ge2+\frac{2\left(a+b+c\right)}{\sqrt[3]{abc}}\)
MỌI NGƯỜI GIẢI NHANH GIÙM NHA
Cho a,b,c: \(\frac{1}{bc-a^2}+\frac{1}{ca-b^2}+\frac{1}{ab-c^2}=0\)
CMR: \(\frac{a}{\left(bc-a^2\right)^2}+\frac{b}{\left(ca-b^2\right)^2}+\frac{c}{\left(ab-c^2\right)^2}=0\)
Chứng minh rằng: \(a^2+b^2+\left(\frac{1+ab}{a+b}\right)^2\ge2\)Với mọi a,b khác 0
cho hai số a, b thỏa mãn a + b # 0
CMR: a2 + b2 + \(\left(\frac{ab+1}{a+b}\right)^2\ge2\)
a, b, c đôi một khác nhau. CM:\(\frac{\left(a+b\right)^2}{\left(a-b\right)^2}+\frac{\left(b+c\right)^2}{\left(b-c\right)^2}+\frac{\left(a+c\right)^2}{\left(a-c\right)^2}\ge2\)