Xét tổng: 5(6a + 11b) + (a + 7b) = 30a + 55b + a + 7b = 31a + 62b = 31(a + 2b) chia hết cho 31
=> 5(6a + 11b) + (a + 7b) chia hết cho 31 (1)
+ Chứng minh chiều xuôi (=>) (Tức có 6a + 11b chia hết cho 31, cm a + 7b chia hết cho 31)
Ta có: 6a + 11b chia hết cho 31
=> 5(6a + 11b) chia hết cho 31, Kết hợp với (1) đc: a + 7b chia hết cho 31
+
+ Chứng minh chiều ngược (<=) (Tức có a + 7b chia hết cho 31, cm 6a + 11b chia hết cho 31)
Ta có: a + 7b chia hết cho 31. Kết hợp với (1) đc: 5(6a + 11b) chia hết cho 31
Mà ƯCLN(5,31) = 1
=> 6a + 11b chia hết cho 31
Vậy : 6a + 11b chia hết cho 31 <=> a + 7b chia hết cho 31
mk ghét chứng minh lắm bn xem trong câu hỏi tương tự có k