cho a,b,c,d>0 chứng minh \(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{a+d}+\frac{d}{a+b}\ge2\)
Cho: \(A=\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\)
Chứng minh rằng: A không là số tự nhiên với a;b;c;d > 0
cho a, b, c, d là số nguyên dương
Chứng minh rằng : 1 \(1< \frac{a}{a+b+C}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)
cho các số hữu tỉ \(\frac{a}{b};\frac{c}{d}\)với b > 0 , d > 0
Chứng minh \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
Cho \(\frac{a}{b}=\frac{c}{d}\).Hãy chứng minh:
\(\frac{a+c}{b+d}=\frac{a-c}{b-d}\)
Cho M =\(\frac{a}{a+b+c}+\frac{b}{a+b+d}+\frac{c}{a+c+d}+\frac{d}{b+c+d}\)
Chứng Minh : M không phải là số tự nhiên
Cho a, b, c, d c N* :
S = \(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\)
Chứng minh S không là số tự nhiên
Chứng minh rằng nếu\(\frac{a}{b}=\frac{c}{d}\left(a,b,c,d\ne0\right)\)thì
a,\(\frac{a-b}{a}=\frac{c-d}{c}\)
b,\(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
Cho a + b + c + d khác 0 và \(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}\)
Tính giá trị biểu thức \(A=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
Cho a/b <c/d Chứng minh rằng : \(\frac{a}{b}