Cho \(\dfrac{a}{b}=\dfrac{c}{d}\)(b, c, d ≠ 0 , b + d ≠ 0). Chứng minh rằng: \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
. Cho a/b = c/d với a, b, c, d > 0. Chứng minh rằng\(\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
Cho \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\) với ( với a, b, c, d khác 0, và c \(\ne\pm d\) ). Chứng minh rằng hoặc \(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\) ?
Cho tỉ lệ thức : a/b = c/d ( a , b , c , d khác 0 )
Chứng minh rằng : a^2 + b^2 / c^2 + d^2 = ab / cd
Cho \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)với a,b,c,d khác 0 ; c khác +d và -d . chứng minh rằng hoặc a/b = c/d hoặc a/b = d/c
cho a^2+b^2/c^2+d^2=ab/cd với a,\b,c,d khác 0 và c không bằng +-d chứng minh a/b=d/c
mọi người ơi giúp mình với
Cho a/b = c/d với a, b, c, d > 0. Chứng minh rằng \(\dfrac{3a^2+10b^20-ab}{7a^2+b^2+5ab}=\dfrac{3c^2+10d^2-cd}{7c^2+d^2+5cd}\)
a,cho 2 số hữu tỉ a/b và c/b b>0 ,d >0 .Chứng minh a/b < c/d thì ab < cd
biết: a^2+b^2/c^2+d^2=ab/cd. Với a.b.c.d khác 0. Chứng minh rằng a/b=c/d