Cho AB, AC là 2 tiếp tuyến của đường tròn (O) tại các tiếp điểm B, C. Gọi E, F lần lượt là trung điểm AB, AC. Lấy M(M khác E, F) bất kì trên È, vẽ các tiếp tuyến MP, MQ tới (O) với P, Q là tiếp điểm. CMR: M là tâm đường tròn ngoại tiếp tam giác APQ
Bài 1: Cho AB,AC là 2 tiếp tuyến của (O).Gọi E, F lần lượt là trung điểm của AB,AC. Trên EF, lấy M bất kì. Từ M kẻ tiếp tuyến MT tới (O).
CMR: MA=MT
cho tam giác ABC ngoại tiếp đường tròn tâm i gọi D ,E ,F lần lượt là các tiếp điểm của các cạnh BC CA AB với đường tròn tâm i .gọi m là giao điểm của AB và BC, AD cắt đường tròn tâm i tại n .gọi k là giao điểm của AC và EF .a)Chứng minh rằng IKND là tứ giác nội tiếp .b) chứng minh rằng MN là tiếp tuyến của đường tròn tâm I.
giúp mk vs!!
1.Từ 1 điểm A nằm ngoài đường tròn tâm O, vẽ 2 tiếp tuyến AB,AC của đường tròn tâm O( B,C là các tiếp điểm), BD là đường kính của đường tròn tâm O, AD cắt đường tròn tâm O tại E.
a)CM: AB2=AD.AE.
b)Gọi H là giao điểm của OA với BC. CMR: HC là phân giác của góc EHD.
2.Cho hình thang ABCD, trên cạnh BC lấy E sao cho BE=BC/3, trên tia đối của tia CD lấy lấy F sao cho CF=BC/2. Gọi M là giao điểm của AE và BF.
CMR: 5 điểm A,B,C,D,M cùng thuộc1 đường tròn.
3.Cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn tâm O, AD là đường kính của (O), tiếp tuyến tại D của (O) cắt BC tại M. Đường thẳng MB cắt AB,AC lần lượt tại E và F.
a) CMR: MD^2=MC.MB
b) Gọi H là trung điểm của BC, CMR: MDHO là tứ giác nội tiếp.
Cho đường tròn (O; R) đường kính BC và một điểm A nằm trên đường tròn sao
cho AB = R. Gọi H là trung điểm của dây cung AC.
a) Tính số đo các góc của tam giác ABC.
b) Qua C vẽ tiếp tuyến của đường tròn (O) cắt tia OH tại D. Chứng minh DA là tiếp
tuyến của đường tròn (O).
c) Tính độ dài bán kính của đường tròn ngoại tiếp tam giác ACD theo R.
d) Trên tia đối của tia AC lấy điểm M, từ M vẽ hai tiếp tuyến ME và MF với đường
tròn (O) tại E và F. Chứng minh ba điểm D, E, F thẳng hàng.
cho tam giác ABC nhọn AB<AC nội tiếp (O). Gọi D,E,F lần lượt là điểm chính giữa của các cung nhỏ AB,BC,CA. Tiếp tuyến tại A của đường tròn cắt các đường thẳng BC và DF lần lượt tại M,N. Gọi P,Q lần lượt là giào điểm của BC với DF và AE. C/m:
a) AE vuông góc DF
b) MA=MQ, MN=MP
Cho nửa đường tròn (O) đường kính AB. Lấy C trên nửa đường tròn, gọi D là điểm trên đoạn AB. Kẻ đường vuông góc với AB tại D cắt BC tại F cắt AC ở E vẽ tiếp tuyến của nửa đường tròn tại C cắt EF tại I. Cmr:
a) I là trung điểm của EF
b) OC là tiếp tuyến đường tròn ngoại tiếp tam giác ECF
Cho tam giác nhọn ABC ( AB<AC) nội tiếp đường tròn (O). Gọi E là điểm chính giữa của cung nhỏ BC. Trên cạnh AC lấy điểm M sao cho EM=EC, đường thẳng BM cắt đường tròn (O) tại N ( N khác B). Các đường thẳng EA và EN cắt cạnh BC lần lượt tại D và F.
a) Chứng minh tam giác AEN đồng dạng với tam giác FED
b) Chứng minh M là trực tâm của tam giác AEN
c) Gọi I là trung điểm của AN, tia IM cắt đường tròn (O) tại K. Chứng minh đường thẳng CM là tiếp tuyến của đường tròn ngoại tiếp tam giác BMK
Cho nửa đường tròn tâm O,đường kính AB. Lấy M nằm trên đường tròn (M khác A và B). Tiếp tuyến tại M cắt tiếp tuyến tại A và B của đường tròn tâm O lần lược tại C và D. Gọi CD giao AB tại P. Gọi E là giao điểm của AM và BD. F là giao điểm của AC và BM. Chứng minh E,F,P thẳng hàng