Ta có: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{\left(a+b\right)^2}{ab\left(a+b\right)}\ge\frac{4ab}{ab\left(a+b\right)}\)
\(\Leftrightarrow a^2+2ab+b^2\ge4ab\) (vì xy(x+y) >0 với x,y > 0)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)( Đúng)
Vậy \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Lời giải:
Xét hiệu:
\(\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}=\frac{a+b}{ab}-\frac{4}{a+b}\)
\(=\frac{(a+b)^2-4ab}{ab(a+b)}=\frac{a^2+2ab+b^2-4ab}{ab(a+b)}=\frac{a^2-2ab+b^2}{ab(a+b)}=\frac{(a-b)^2}{ab(a+b)}\geq 0, \forall a,b>0\)
\(\Rightarrow \frac{1}{a}+\frac{1}{b}\geq \frac{4}{a+b}\) (đpcm)
Dấu "=" xảy ra khi $a=b$
Áp dụng BĐT AM-GM ta có:
\(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}\ge\frac{2}{\frac{a+b}{2}}=\frac{4}{a+b}\)
Dấu " = " xảy ra <=> a=b