Answer:
Ta có:
\(\hept{\begin{cases}\frac{a}{a'}+\frac{b'}{b}=1\\\frac{b}{b'}+\frac{c'}{c}=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}ab+a'b'=a'b\\bc+b'c'=b'c\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}ab=a'b-a'b'\\b'c'=b'c-bc\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}abc=a'bc-a'b'c\\a'b'c'=a'b'c-a'bc\end{cases}}\)
Vậy \(abc+a'b'c'=0\)