\(5A=5^2+5^3+5^4+...+5^{2017}\)
\(A=\frac{5A-A}{4}=\frac{5^{2017}-5}{4}=\frac{5\left(5^{2016}-1\right)}{4}\)
\(\Rightarrow4.A+5=\frac{4.5\left(5^{2016}-1\right)}{4}+5=5\left(5^{2016}-1\right)+5=5^x\)
\(\Rightarrow\frac{5\left(5^{2016}-1\right)}{5}+\frac{5}{5}=\frac{5^x}{5}\Rightarrow5^{2016}-1+1=5^{x-1}\)
\(\Rightarrow5^{2016}=5^{x-1}\Rightarrow x-1=2016\Rightarrow x=2017\)