Gọi d = ƯCLN ( 3n + 2; 4n + 3 )
\(\Rightarrow\hept{\begin{cases}3n+2⋮d\\4n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}4\left(3n+2\right)⋮d\\3\left(4n+3\right)⋮d\end{cases}\Rightarrow}}\hept{\begin{cases}12n+8⋮d\\12n+9⋮d\end{cases}}\)
\(\Rightarrow\left(12n+9\right)-\left(12n+8\right)⋮d\)
\(\Rightarrow12n+9-12n-8⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy \(A=\frac{3n+2}{4n+3}\)là phân số tối giản