1) Cho a,b,c là ba số thực thỏa mãn: abc khác 0, a+b+c khác 0 và a3+b3+c3=3abc. Chứng minh
\(\left(\frac{1}{a}+\frac{1}{b}\right)\left(\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{c}+\frac{1}{a}\right)=\frac{8}{abc}\)
Cho a3+b3+c3 = 3abc và a +b +c khác 0
a) Tính giá trị biểu thức \(\frac{a^2+b^2+c^2}{_{\left(a+b+c\right)^2}}\)
b)Chứng minh : P=\(\left(\frac{1}{a}+\frac{1}{b}\right)\left(\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{c}+\frac{1}{a}\right)=\frac{8}{abc}\)
cho a3+b+c=3abc và abc#0 và a+b+c#0
cmr P=(\(\frac{1}{a}+\frac{1}{b}\))\(\left(\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{c}+\frac{1}{a}\right)\)=\(\frac{8}{abc}\)
Cho \(a^3+b^3+c^3=3abc\)và \(abc\ne0;a+b+c=0\)
CMR \(\left(\frac{1}{a}+\frac{1}{b}\right)\left(\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{c}+\frac{1}{a}\right)=0\)
Bài tập 3* . Chứng minh rằng :
\(x^2+y^2+\frac{1}{x}+\frac{1}{y}\ge2\left(\sqrt{x}+\sqrt{y}\right)\) với x, y > 0
Bài tập 5* . Chứng minh rằng :
\(\frac{a}{b+c+1}+\frac{b}{a+c+1}+\frac{c}{a+b+1}+\left(1-a\right)\left(1-b\right)\left(1-c\right)\le1\)với \(0\le a,b,c\le1\)
Bài tập 9* . Chứng minh rằng :
\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{a^3+c^3+abc}\le\frac{1}{abc}\)với a, b, c > 0
Cho a,b,c khác 0 thỏa mãn: a^3+b^3+c^3=3abc
Tính E=\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
Cho a,b,c>0 và abc=1. Chứng minh: \(\frac{1}{a^3.\left(b+c\right)}+\frac{1}{b^3.\left(a+c\right)}+\frac{1}{c^3.\left(b+c\right)}\ge\frac{3}{2}\)
Tính G = \(\left(1-\frac{a}{b}\right)\left(1-\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
Cho a,b,c khác 0 thỏa : a3 - b3 - c3 = 3abcTính H = \(\left(1-\frac{a}{b}\right)\left(1-\frac{b}{c}\right)\left(1-\frac{c}{a}\right)\)
Cho a, b, c khác 0 và thỏa \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\). Chứng minh rằng: a = -b