gợi ý:
a) nhóm 3 số liên tiếp thành 1 cặp:
A = (3 + 33 + 35) + .....
b) nhóm 4 số liên tiếp thành 1 nhóm
A = (3 + 33 + 35 + 37) + ....
ta co
A=3+33+35+...+31991
A=(3+33+35)+(37+39+311)+...+(31987+31989+31991)
A=(3+33+35)+36(3+33+35)+....+31986(3+33+35)
A=273+273.36+...+273.31986
A=273(36+31986) Vi\(273⋮13\)
\(\Leftrightarrow A⋮13\)
b)A = ( 3 + 3² + 3^5 + 3^7 ) + ( 3^9 + 3^11 + 3^13 + 3^15 ) + . + ( 3^1991 + 3^1989 + 3^1987 + 3^1985 )
A = 2442 + 3^9( 3 + 3² + 3^5 + 3^7 ) + .......... + 3^1985( 3 + 3² + 3^5 + 3^7 )
A = 2442 + 3^9 . 2442 + ........... + 3^1985.2442
Do 2442 chia hết cho 41 => A chia hết cho 41
a) Ta có: \(A=3+3^3+3^5+...+3^{1991}\)
\(=\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+...+\left(3^{1987}+3^{1989}+3^{1991}\right)\)
\(=3\times\left(1+3^2+3^4\right)+3^7\times\left(1+3^2+3^4\right)+...+3^{1987}\times\left(1+3^2+3^4\right)\)
\(=3\times91+3^7\times91+...+3^{1987}\times91\)
\(=3\times7\times13+3^7\times7\times13+...+3^{1987}\times7\times13\)
\(=13\times\left(3\times7+3^7\times7+...+3^{1987}\times7\right)\)
Vì \(A=13\times\left(3\times7+3^7\times7+...+3^{1987}\times7\right)\)nên A chia hết cho 13.
b) Ta có: \(A=3+3^3+3^5+...+3^{1991}\)
\(=\left(3+3^3+3^5+3^7\right)+...+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)\)
\(=3\times\left(1+3^2+3^4+3^6\right)+...+3^{1985}\times\left(1+3^2+3^4+3^6\right)\)
\(=3\times820+...+3^{1985}\times820\)
\(=3\times20\times41+...+3^{1985}\times20\times41\)
\(=41\times\left(3\times20+...+3^{1985}\times20\right)\)
Vì \(A=41\times\left(3\times20+...+3^{1985}\times20\right)\)nên A chia hết cho 41.