Ta có : \(A=3+3^2+3^3+...+3^{2009}\)
=> \(3A=3^2+3^3+3^4+...+3^{2009}+3^{2010}\)
=> \(3A-A=\left(3^2+3^3+...+3^{2010}\right)-\left(3+3^2+...+3^{2009}\right)\)
=> \(2A=3^{2010}-3\)
=> \(2A+3=3^{2010}-3+3\)
=> \(2A+3=3^n=3^{2010}\)
=> \(n=2010\)
vào chtt có trieu dang làm cả bài giải đó