A=(3+32+33) + ......+(397+398+399)
A=3.(1+3+9)+.......+397(1+3+9)
A=3.13 + ...... +397.13
A=13.(3+......+397) chia hết cho 13
A=(3+32+33) + ......+(397+398+399)
A=3.(1+3+9)+.......+397(1+3+9)
A=3.13 + ...... +397.13
A=13.(3+......+397) chia hết cho 13
Ta có :
\(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...........+\left(3^{97}+3^{98}+3^{99}\right)\)\(\Rightarrow A=3.\left(1+3+3^2\right)+3^4.\left(1+3+3^2\right)+.............+3^{97}.\left(1+3+3^2\right)\)
\(\Rightarrow A=3.13+3^4.13+...............+3^{97}.13\)
=> \(\Rightarrow A=13.\left(3+3^4+.............+3^{94}+3^{97}\right)\)
Vậy A chia hết cho 3 ( đpcm)