\(A=3+3^2+3^3+...+3^{100}\)
\(3A=3^2+3^3+...+3^{101}\)
\(3A-A=\left[3^2+3^3+...+3^{101}\right]-\left[3+3^2+3^3+...+3^{100}\right]\)
\(2A=3^{101}-3\)
\(A=\frac{3^{101}-3}{2}\)
Thay \(2A=3^{101}-3\)vào ta có : \(3^{101}-3+3=3^x\)
=> \(3^{101}=3^x\)
=> x = 101
Vậy x = 101