a) Xét hiệu A - B
= 2x - 3 - (6-x) = 3x-9
Nếu x < 3 => 3x - 9 < 3.3-9 = 0 => A < B
Nếu x = 3 thì 3x - 9 = 0 => A = B
Nếu x > 3 thì 3x - 9 >0 => A > B
Vậy .....
b)
Để A.B > 0
=> (2x-3)(6-x) > 0
\(\left\{{}\begin{matrix}2x-3>0\\6-x>0\end{matrix}\right.hoặc\left\{{}\begin{matrix}2x-3< 0\\6-x< 0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\dfrac{3}{2}\\x< 6\end{matrix}\right.\Leftrightarrow\dfrac{3}{2}< x< 6\\\left\{{}\begin{matrix}x< \dfrac{3}{2}\\x>6\end{matrix}\right.\left(loại\right)\end{matrix}\right.\)
Vậy \(\dfrac{3}{2}< x< 6\) là giá trị cần tìm