Để A có giá trị nguyên => \(\frac{2n+9}{n+3}\in Z\)
\(=\frac{2n+6+3}{n+3}\in Z\Rightarrow\frac{2\left(n+3\right)+3}{n+3}\in Z\)
\(\Rightarrow\frac{2\left(n+3\right)}{n+3}+\frac{3}{n+3}=2+\frac{3}{n+3}\in Z\)
\(2\in Z\Rightarrow\frac{3}{n+3}\in Z\)
\(\Rightarrow n+3\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(TH1:n+3=-1\Rightarrow n=-4\)
\(TH2:n+3=1\Rightarrow n=-2\)
\(TH3:n+3=-3\Rightarrow n=-6\)
\(TH4:n+3=3\Rightarrow n=0\)
Với n E Z ;n khác -3,ta có:
A=2(n+3)+3/n+3=2+3/n+3
Để A có giá trị nguyên
thì 3 chia hết cho n+3
=> n+3 E Ư(3)=(1;-1;3;-3)
=>n E (-2;-4;0;-6)
\(A=\frac{2n+9}{n+3}=\frac{2n+6+3}{n+3}=\frac{2(n+3)+3}{n+3}=1+\frac{3}{n+3}\)
A có giá trị nguyên \(\Leftrightarrow n+3\inƯ(3)=\left\{\pm1;\pm3\right\}\)
n + 3 | 1 | -1 | 3 | -3 |
n | -2 | -4 | 0 | -6 |
Vậy : ...