a^2 = b^2 + c^2 (1)
=> a^2 = (b+c)^2 - 2bc
=> a^2 <= (b+c)^2
=> a <= b+c (2)
Nhân (1) với (2), vế theo vế ta có:
a^3 = b^3 + c^3 + bc(b+c)
=> a^3 >= b^3 + c^3
a^2 = b^2 + c^2 (1)
=> a^2 = (b+c)^2 - 2bc
=> a^2 <= (b+c)^2
=> a <= b+c (2)
Nhân (1) với (2), vế theo vế ta có:
a^3 = b^3 + c^3 + bc(b+c)
=> a^3 >= b^3 + c^3
cho a^2=b^2+c^2,So sánh a va b+c, a^3 và b^3 +c^3?
1 Cho a,b,c là ba số dương thỏa mãn điều kiện a2=b2+c2
a)So sánh a và b+c
b) So sánh a3 và b3+c3
Bài 2
1)Giai phương trình : x3-6x-40=0
2) Tính A=\(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)
1) So sánh :
a) 23-2√19/3 và 27
b) √(3√3) va √(2√2)
c) √(4-√7) - √(4+√7) - √2 và số 0
2) C/m đẳng thức: lAl + lBl>= lA+Bl. Đẳng thức xảy ra khi nào.
1 Cho a,b,c là ba số dương thỏa mãn điều kiện a2=b2+c2
a)So sánh a và b+c
b) So sánh a3 và b3+c3
Bài 2
1)Giai phương trình : x3-6x-40=0
2) Tính A=\(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)
Bài 3 Chứng minh rằng nếu x+y+z=0 thì
2(x5+y5+z5)=5xyz(x2+y2+z2)
1 Cho a,b,c là ba số dương thỏa mãn điều kiện a2=b2+c2
a)So sánh a và b+c
b) So sánh a3 và b3+c3
Bài 2
1)Giai phương trình : x3-6x-40=0
2) Tính A= \(\sqrt[3]{20+14\sqrt{2}+\sqrt[3]{20-14\sqrt{2}}}\)
Bài 3 Chứng minh rằng nếu x+y+z=0 thì
2(x5+y5+z5)=5xyz(x2+y2+z2)
So sánh:
a ) 2 v à √ 3 ; b ) 6 v à √ 41 ; c ) 7 v à √ 47
So sánh
a) 2 và 1+\(\sqrt{2}\)
b) 4 và 1+\(\sqrt{3}\)
c) -2\(\sqrt{11}\) và -10
d) 3\(\sqrt{11}\) và 12
Cho 3 số a,b,c thỏa mãn 0<= a,b,c <=1 va a,b,c=3/2. Tìm giá trị lớn nhất biểu thức p= a^2+b^2+c^2
cho a,b,c >0 va abc=1 c/m
\(\frac{1+ab^2}{c^3}+\frac{1+bc^2}{a^3}+\frac{1+ca^2}{b^3}>=\frac{18}{a^3+b^3+c^3}\)