a + 2b = 1 => 2b = 1 - a
Biến đổi VT:
\(a^3+8b^3+2ab-a^2-4b^2\)
\(=a\left(a^2+2b-a\right)+\left(2b\right)^3-\left(2b\right)^2\)
\(=a\left(a^2+1-a-a\right)+\left(2b\right)^2\left(2b-1\right)\)
\(=a\left(a^2-2a+1\right)+\left(1-a\right)^2\left(1-a-1\right)\)
\(=a\left(a-1\right)^2-a\left(1-a\right)^2\)
\(=a\left[\left(a-1\right)^2-\left(1-a\right)^2\right]\)
\(=a\left(a-1+1-a\right)\left(a-1-1+a\right)\)
\(=0\)(đpcm)